

0.12kW to 1250kW

Over the last 67 years, we have become a reflection of the strength and purpose that today represent Indian Industry and its growing power internationally. Bharat Bijlee has evolved from a pioneer of electrical engineering in India to one of the most trusted names in the industry. Our portfolio of products and services includes Power Transformers, Projects, Motors, Drives and Elevator Systems and caters to a spectrum of industries and the builders of the nation's infrastructure: Power, Refineries, Steel, Cement, Railways, Machinery, Construction and Textiles.

Our products must perform faultlessly and we must fulfill the most demanding delivery schedules. We value innovation and are proud of the customer - centric outlook that enables us to develop specialised solutions for a wide range of utility and industrial markets. Our plant near Mumbai & our extensive network of Sales and Service offices are integrated by enterprise - wise management and information systems. Technology and innovation coverage to offer our customers integrated solutions that meet their specific needs. We are growing; expanding both our manufacturing range and capacities, venturing into related diversifications and exploring new markets with new partners.

Transformers

LT Motors 0.12kW to 1250 kW, up to 690V

Drives

Crane & Hoist Duty Motors

Projects

MV Motors 160kW to 1000kW, up to 6.6kV

Elevator Systems

Complete range of BBL motors from frame 56 to 450 (0.12kW to 1250kW) suitable for all applications across industries.

C .	CRANE AND HOIST DUTY MOTORS	
	Technical Information	
	 1. Crane Duty Motors a. Technical Information b. Performance Table c. Performance Table d. General Arrangement Drawing 	. 1
	 2. Slipring Crane Duty Induction Motors a. Technical Information b. Performance Table c. General Arrangement Drawing 	. 12
	 3. Cane Unloader Motors a. Technical Information b. Performance Table c. General Arrangement Drawing 	. 35
	4. Brake Motors a. Technical Information b. Performance Table c. General Arrangement Drawing	41
	Annexure	47

PRODUCT RANGE

Bharat Bijlee manufactures a complete range of three phase squirrel cage induction motors.

Motor Type	Frame	Power (kW)	Polarity	
Standard Motors	63 to 355	0.18 to 315	2, 4, 6, 8	
IE2 Motors	71 to 355	0.37 to 375	2,4,6	-630
Large LT Motors(DCCA)	355 to 450	280 to 1250	2, 4, 6, 8	Superior State
Standard Flame Proof Motors	80 to 280	0.37 to 90	2, 4, 6, 8	
IE2 Flame Proof Motors	80 to 315	0.37 to 200	2, 4, 6	
Non - Sparking Motors	63 to 400	0.12 to 560	2, 4, 6, 8	
Increased Safety Motors (For details, please contact our Sales Office)	63 to 450		2, 4, 6, 8	
Crane & Hoist Duty Motors	71 to 355	0.37 to 400	4, 6, 8	
Brake Motors	71 to 132	0.25 to 9.3	2, 4, 6, 8	
Slip ring Motors	100 to 160	1.1 to 10	4,6	
Textile Motors - Ring Frame	100 to 160	1.1 to 15	4	
Cane Unloader Motors	160 to 225	11 to 30	6	-
Marine Duty Motors	63 to 450			
Roller Table Motors	As per requirement			
Railway Auxilliary Motors	As per requirement			CO
Medium Voltage Motors	355 to 450	160 to 1000	2,4,6,8	

Bharat Bijlee make crane and hoist duty motors are ideally suitable for short time and intermittent duties. These motors are specially designed for frequent starts/stops and reversals.

Major Application

These motors are widely used in following applications:

- Crane duty and Hoist duty application including LT & CT drives
- Material Handling
- Weirs and Sluices
- Lift Duty
- Auxiliary motors in rolling mills

Product Range

Frame Size	kW Range
71 to 355L	0.37 to 400

Standards

In general these motors conform to following standards

IS : 325	Three Phase Induction motors specification
IS : 1231	Dimensions of foot mounted A.C induction motors
IS : 2223	Dimensions of flange mounted A.C Induction motors

CE Marks

All motors have CE marking on the nameplate.

ELECTRICAL FEATURES

Operating Conditions

Supply conditions (Voltage & Frequency)

Voltage	:	415V±10%
Frequency	:	50Hz ± 5%
		1 1 00/

Combined Variation : ±10%

*Other voltage / Frequency on request.

Ambient

Motors are designed for ambient temperature of 45° C.

Altitude

Motors are designed for altitude up to 1000m above mean sea level.

Re-rating Factors

The re-rating applicable under different conditions of ambient and altitude are obtained by multiplying following factors.

Variation in Ambient & Altitude

Amb. Temp. (°C)	Permissible output as % of rated value	Altitude above sea level (meters)	Permissible output as % of rated value
≤ 30	107	1000	100
30-45	100	1500	97
50	96	2000	94
55	92	2500	90
60	87	3000	86
Table 1		3500	82
		4000	77

Insulation

The motors are provided with class F insulation scheme with temperature rise limited to class B limits.

Winding

The stators are wound with modified polyester enamel covered (Temp class 155°C) copper wires as per IS 13730:3 and impregnated with class F varnish. However motors wound with dual coated copper wires and VPI can be provided on request.

All Motors in 315S frame & above are wound with dual coated winding wire (thermal class 200°C) as per IS 13730:13 and all are impregnated with VPI process.

Thermal Protection (for Winding & Bearing)

PTC thermistors / thermostats/ RTDs etc. can be embedded in stator winding on request.

In case of frame sizes 250M & above bearing temperature detectors (BTD) can be supplied on request.

Earthing Terminals

Two earthing terminals are provided, one on the body and other in the terminal box.

Anti- condensation Method

In order to avoid condensation of water inside the motors they can be heated up by connecting voltage 4% to 10% of rated voltage to the motor terminals. Adequate heating is obtained with current equal to 20-25% of rated motor current. Alternatively any method as indicated in IS: 900 for heating the stator winding could be adopted. Motors can also be offered with built in space heaters in frame sizes 90S and above.

MECHANICAL FEATURES Enclosures: (Material & T Box Location)

France Cine	Enclosure	Terminal Box Location		
Frame Size	Materials	Standard	Option available	
63-80	Aluminum	тор		
000 11214	Aluminum	тор		
90S-112M	Cast Iron	RHS	TOP & LHS	
132S-132M	Aluminum	тор	-	
132S-225M	Cast Iron	RHS	TOP & LHS	
250M-355L	Cast Iron	тор	RHS & LHS	

Table 2

Degree of Protection

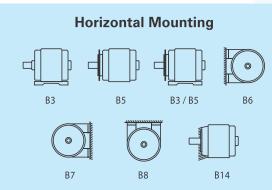
All motors have IP55 degree of protection as per IS:4691. Higher degree of protection such as IP56, IP66 can be offered on request. All flange mounted motors are additionally provided with oil tight shaft protection on driving end side.

Note: For more details, refer to annexure II on page no. 121.

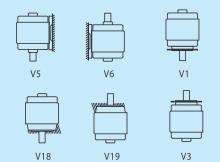
Cooling

All motors are totally enclosed Fan Cooled (TEFC). The cooling is effected by self driven, bi-directional centrifugal fan protected by fan cover. The Type of cooling is IC411 as per IS: 6362-Motors with natural ventilation(TENV) or with forced cooing arrangement can be offered on request.

Minimum cooling distance as indicated in GA Drawing has to be provided for effective cooling of the motor.


Note: For more details, refer to annexure I on page no. 120.

Type of Construction


Standards motors are designed for foot mounting (B3). Motors up to frame 355 are also suitable for B6, B7, B8, V5 and V6 mounting.

Motors can be supplied in Flange mounting (B5). Flange mounted motors up to frame 355 are also suitable for V1 and V3 mounting.

Mounting

Vertical Mounting

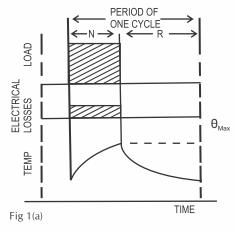
		Bearing clear		Termin- al Box	Ter	minal	No. & size of	Max cond.	
Frame Size		DE	NDE	Type/ Location	No.	Size	Cable entries	Cross Sec. area (mm ²)	
63	3	6201 2Z	6201 2Z	gk030/					
7:	L	6202 2Z	6202 2Z		3			4	
80)	6004 2Z	6004 2Z	Тор			1×3/4"		
90S,	90L	6205 2Z	6205 2Z	gk130/ TOP	3*	M4		6	
100)L	6206 2Z	6205 2Z	gk230/	3*				
112	M	6206 2Z	6205 2Z	TOP	2.			10	
132S, 3	132M	6208 2Z	6208 2Z	gk330/ TOP	6	M5	2×1″		
160M,	160L	6309 2Z	6209 2Z	gk330/ RHS	0	IVID		16	
180M,	180L	6310 2Z	6210 2Z	gk430/ RHS	6	M6	<u>2 × 1</u> 1/2″	50	
200)L	6312 2Z	6212 2Z	TB225/	6	M8		70	
225S, 2	225M	6313	6213	RHS	0	1010		70	
250	M	6315	6215						
	2P	6316	6316	TB280/			2 × 2″		
280 S/M	4,6 & 8P	6317	6316	Тор	6	M10		150	
315S, 315M 315L			тв315/			<u>2 × 2″</u>			
		6319	6319	Тор	6	M12	2 × 2 1/2″	240	
355L		6322	6322	TB355/ Top	6	M16	2 × 3″	300	

Table 3

*3 Terminals up to and including 1.5kW & 6 terminals for higher outputs

Special Design Features

- Increased air gap between stator and rotor
- Special rotor design

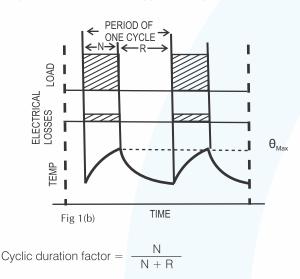

Types of Duties

The various operating cycles of driven machines can be classified into nine basic duties, ranging from S1 to S9 They are as follows:

S ₁	Continuous duty					
S ₂	Short time duty					
S ₃	Intermittent periodic duty					
S ₄	Intermittent periodic duty with starting					
S₅	Intermittent periodic duty with starting and electric braking					
S ₆	Continuous duty with Intermittent periodic loading					
S ₇	Continuous duty with starting and electric braking					
S ₈	Continuous duty with periodic speed changes					

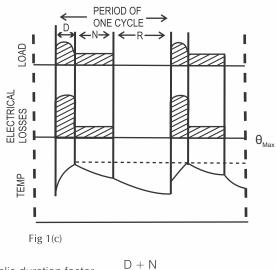
A) S2-Short Time Duty

This includes a period of operation at constant load which are too short to attain thermal equilibrium, followed by rest period of sufficient duration to reestablish equality of temperature with cooling medium in one cycle.


N = Operation under rated conditions.

R = At rest de-energized

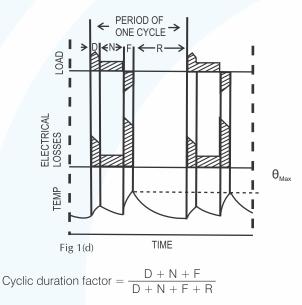
 θ_{Max} = Maximum temperature attained during the duty cycle.


B) S3- Intermittent Period Duty

This includes a period of operation at constant load and a de-energized period, which are too short to attain thermal equilibrium during one cycle. The starting current does not significantly affect the temperature rise for this type of duty.

C) S4- Intermittent Periodic Duty with Starting

This includes a period of starting, a period of operation at constant load and a de-energized period, which is too short to attain thermal equilibrium during one cycle. The starting affects temperature rise, as load GD^2 is higher than rotor GD^2 and/ or no. of start/hour is high, for this type of duty. The motor is stopped after switching off either by natural deceleration, or by a mechanical Brake, without additional heating of the windings



Cyclic duration factor = $\frac{D + N}{D + N + R}$ Where D = Starting

D) S5- Intermittent Periodic Duty with Starting and Electrical Braking

This includes a period of starting, a period of operation at constant load, a period of electrical braking, and de-energized period which are too short to attain thermal equilibrium during one duty cycle. It is understood that the starting affect temperature rise, as in (c) above, and the stopping also affects temperature rise as braking is carried out electrically.

We also supply motors for special types of duties, on enquiry including multi-speed motors with squirrel cage rotors.

The common Cyclic Duration Factors (CDF) for the above duties are 25%, 40% and 60%. We also supply, on enquiry, motors for other CDF's. The CDF calculations are shown in figures 1(a), 1(b), 1(c), 1(d).

	Starting Class				
Duty Cycle	St/hr	Jogs/hr to pl		Complete plug reversal/hr	No. of Starts/hr thermal Equivalent
	60	0	0	0	
S3	40	80	0	0	60
	20	80	20	0	
S4	150	0	0	0	150
34	100	200	0	0	150
	80	0	80	0	
S5	65	130	65	0	150
	30	160	30	30	
S4	300	0 0	0	0	200
54	200	400	0	0	300
	160	0	180	0	
S5	130	260	130	0	300
	60	320	60	60	
			Tabla	-	

Examples of typical Starting Duties

Table 5

Refer above table for example of typical starting duties and selection of starting class. Table given here are for load $GD^2 \leq rotor GD^2$. For cases where load $GD^2 > rotor GD^2$ the motor should be selected from the table with a higher no. of starts/hr. as per the formula.

No. of starts allowed =No. of starts as per table $\times 2 \times GD^2$ of rotor/(GD² of rotor + GD² of load).

Selection of motors for hoist motions

For hoisting motor, the power required shall not be less than that computed from the following:

$$kW = -\frac{MVC_vCDF}{6.12E} X - \frac{1}{C_{amb}}$$

Where, derating factor will be taken as 12%,

- kW = One hour power rating for DC motors & power rating at (S-40%) cyclic duration factor for AC motors
- M = Mass of rated load on hook plus weight of hook block & wire ropes in tones
- V = Specified hoisting speed in m/min
- E = Combined efficiency of gears & sheaves = (0.93)n × (0.98)m for sleeve bearings

= $(0.95)n \times (0.99)m$ for antifriction

bearings

- = (0.985)n × (0.99)m for hardened profile ground & oil splashed lubricator, where
- n = Number of pairs of gears
- m = Total number rotating sheaves passed over by each part of the moving rope attached to the drum
- C_v = Service factor for vertical motion depending on type of motors,
 - = 0.67 for AC motors,

= 0.5 for DC motors

CDF = Cyclic duration factor

C_{amb} = Derating factor for ambient temperature as per table 1.

For an AC hoist motor, the specified full load hoist speed must be obtained at not more than rated

Where sufficient information is not available values given in table 6 below for duty cycles, cyclic duration factor & starting corresponding to mechanism class shall be used. The values given are based on the following formula:

Recommended Cyclic Duration Factor & starting class:

Mechanism Class	Duty cycle No. of cyclic class (c) Cycles/hr (%)	Recommended CDF (%)	Starting class (c) Equivalent starts/hr
M1	Up to 5 Cycles 25	25	90
M2	Up to 5 Cycles 25	25	90
М3	10 to 15 Cycles 40	40	150
M4	16 to 20 Cycles 40	40	150
M5	21 to 30 Cycles 60	60	300
M6	31 to 40 Cycles 60	60	300
M7	41 to 50 Cycles 100	100	600
M8	51 to 60 Cycles 100	100	600

Table 6

Selection of Motors for Crane Travel or Trolley Traverse

It is assumed that the drive mechanism from the motor to the track wheels will use enclosed gearings mounted on anti-friction bearings. The actual efficiency of the drive will be adopted in making calculations. Where actual efficiency values are not available, the efficiency of the drive shall be taken in the range of 0.85 to 0.9.

For the track wheel with anti-friction bearings the rolling friction at these bearings plus the friction between the track wheels with an average drive efficiency of 0.875 will give an overall friction factor of 8.0 kgf per tonne of the mass moved for calculation of the motor horse power or torque. In the case of wheels with the plain bearings an overall friction of 13.0 kgf per tonne of the mass moved may be used.

Selection of Motors for Crane Travel or Trolley Traverse:

For bridge travel or trolley traverse the power of the motor required shall not be less than that computed from the following:

For indoor cranes

$$kW = \frac{MVSCDF}{6117T} \times \frac{(F+1100a)}{981N}$$

For outdoor cranes

$$kW = \frac{MVSCDF}{6117T} \times \frac{(F+1100a)}{981N} + \frac{R_wV}{6117T}$$

where,

- kW = One hour power rating for DC motors & power rating at 40 percent cyclic duration factor for AC motors.
- M = Mass of crane or trolley plus mass of max rated load in tonnes.
- V = Specified free running speed m/min.
- N = Mechanical efficiency of gearing. For spur & helical gears it can be taken as 0.95 per reduction.
- T = Factor introduced by the permissible motor torque during acceleration exceeding the motor rated torque. As a general guidance value of T may be taken as 1.7 for motor having pull out torque of 275 percent full load torque. Lower value of T should be taken for corresponding lower value of pull out torque.
 - = 1.3 of d.c motor pull out torque *100
 - = 1.6 for a.c motor 160*full load torque

- F = Overall friction factor
 - = 8kgf per tonne for wheel on anti friction bearing.
 - = 13 kgf per tonne for wheels on plane bearings
- CDF = Cyclic duration factor
- R_w = Load due to service wind acting horizontally, which can be obtained by multiplying the horizontal exposed area by the service wind by taking drag co-efficient into consideration.
- A = Average linear acceleration of the crane of the trolley in cm/s² till the mechanism reaches 90% of free running speed for the value of average linear acceleration refer table 7
- S = Service factor aimed at providing adequate motor heat dissipation capacity as given in table 7

Acceleration values

Speed	Acceleration	Acceleration	Acceleration
to be	in cm/s ²	in cm/s ² for	in cm/s ² for
reached	Low &	Moderate &	High speed
m/min	Moderate	High speed	with High
	speed with	(Normal	Acceleration
	Long Travel	Application)	
240	-	50	67
190	-	44	58
150	-	39	52
120	22	35	47
100	19	32	43
60	15	25	33
40	12	19	-
25	10	16	-
15	8	-	-
10	7	-	-

Table 7

VFD Crane Duty Motors

The growing need for energy saving and accurate control has resulted in increased demand for VFD operated Crane Duty Motors. It has advantage over traditional Slipring Motor on speed range with low maintenance leading to reduced Life Cycle Cost. Current control of VFD Driven motors is better than Standard TEFC SCR Motors. Crane / Hoist Duty Motors call for the Constant Torque application and the speed range varies from 10% to 100% of the synchronous speed.

Bharat Bijlee Inverter Duty Crane and Hoist Motors are provided with special insulation system suitable to withstand voltage spikes when run on VFD. The selection of frame size for various duty type and starts shall be as per the selection table enclosed. These motors have following special features:

- Dual Coated Winding Wire
- Vacuum Pressure Impregnation

Standard Features:

Voltage: 220 to 690 Volts Frequency: 50/60 Hz Ambient: 45°C

Altitude: 1000 meters above mean sea level. Insulation: Class F / H (Temperature rise limited to Class B)

Bharat Bijlee Motors are suitable for the following IGBT Drive output

- High Frequency in the range of 3kHz 6kHz
- Voltage rise time > 0.1 sec
- Voltage spikes up to 1600V and rise time of 0.1 sec
- THD<3%

Bharat Bijlee motors from 315 frame and above are inherently suitable for VFD operation.

Optional: Insulated bearing (Recommended for 250 Frame onwards) Thermister /RTD / BTD.

Motors with Integral Brakes

These motors can be supplied with integral fail safe D.C. brake in frame sizes up to 132, with built in rectifiers (so that no separate DC supply is required for brake part).For more details refer brake motors section of the catalogue.

Flame-proof Crane Duty Motors

Motors suitable for intermittent duty operation can be offered in frame sizes MJ80, MJ 90, MJ 100, MJ 112 and MJ 132. for enquiry please refer to our sales office.

Enquiries

When making an enquiry or placing an order for crane duty motor, please furnish the following information. This will enable us to supply most suitable motor for your cranes and hoists.

1. Details of Crane:

- a. Class of crane
- b. Type of crane
- c. Tonnage of crane
- d. Operating speed
- e. Type of motion: Hoisting, Travelling or Traversing
- 2. Electrical Features:
- a. Motor Outpt (kW) and Polarity
- b. Supply voltage and frequency with variations
- c. Type of Rotor: Squirrel Cage / Slipring
- d. Class of Insulation and ambient temperature
- e. Method of starting
- f. Requirement of starting torque, pull out torque, starting current
- g. Load torque of the driven equipment
- h. In case of Slipring motors rotor voltage and rotor current is to be specified

3. Operational Details:

- a. Duty type: S2,S3,S4 or S5
- b. Duty cycle details preferably with a sketch if different from S2, S3, S4 or S5.
- c. No. of starts per hour
- d. Method of braking: plugging, DC injection/ mechanical brake
- e. No. of reversals per hour
- f. Cyclic duration factor (CDF)
- g. Load inertia referred to motor speed (GD²)
- 4. Mechanical Features:
- a. Enclosure
- b. Degree of protection
- c. Mounting
- d. Fixing dimensions

(If Bharat Bijlee standard motor fixing dimensions are not applicable, please let us know your specific requirements, preferably with a drawing)

- e. Shaft extension: Requirement of shaft extension if any, needs to be mentioned
- f. Any other relevant data

Note: For more details, refer to page 6, 7, 8, 9, 10 and 11 of Industrial Motors Technical Information section.

 \mathbb{Y}

CRANE AND HOIST DUTY WITH DOL STARTING ORS

Performance table for 4-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist duty with DOL Starting Fr. 71 to 355L

Ambient : 45°C Duty : S3 / S4

Voltage: 415V \pm 10%Frequency: 50Hz \pm 5%Combined Variation: \pm 10%

Ins. Class :F Temp. Rise :B Protection :IP55

1500 rpm (4-Pole)

	Net Wt.	B3 Const. kg	7	10	11	14	17	27	35	56	68	93	103	107	132	188	270	328	362	475	653	713	902	1010	1185	1262	1305	1290	1855	2050
	Rotor CD2	kgm²	0.0033	0.0061	0.0072	0.0120	0.0160	0.0260	0.058	0.127	0.143	0.141	0.177	0.193	0.265	0.540	0.860	1.32	1.60	2.83	5.00	6.00	8.7	10.2	12.2	13.4	14.6	17.76	32.70	38.20
	Pullout Torque	Torque Ratio	2.75	2.75	2.80	2.75	2.80	3.00	2.80	2.90	2.90	2.80	2.80	2.80	2.50	2.60	2.60	2.60	2.50	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.50
Starting	Starting		2.25	2.30	2.30	2.25	2.30	2.30	2.50	2.25	2.30	2.25	2.25	2.25	2.10	2.40	2.60	2.50	2.50	2.50	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.25	2.25	2.20
With DOL Starting	Starting	-	3.7	4.5	5.0	5.0	4.8	6.0	6.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	To to to		1310	1340	1365	1385	1380	1380	1400	1440	1440	1440	1440	1440	1445	1460	1465	1470	1470	1475	1480	1480	1485	1486	1487	1487	1487	1488	1488	1488
		Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.2	9.3	11.5	13.3	17.3	19.9	22.5	29.7	42.8	49.4	59.0	72.1	86.5	98.3	114.6	137.5	176.7	196.4
	60 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	23	27	33	35.5	45	54	61	78	112	130	155	188	223	254	299	344	443	495
300 Starts/ hr.		Ş¥ ¥	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	12.1	13.8	17	20	26	30	34	45	65	75	90	110	132	150	175	210	270	300
300 St	ц.	Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.9	9.3	11.5	14.7	18.6	21.2	24.5	31.7	44.1	52.6	62.3	75.4	90.4	103.5	117.9	144.0	183.3	202.9
	40 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	27	33	39	49	57	66	84	116	139	164	196	233	268	308	361	460	512
		k	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	1	13.2	13.8	17	22	28	32	37	48	67	8	95	115	138	158	180	220	280	310
	L.	Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.2	10.1	12.5	14.7	19.9	22.5	26.5	34.3	46	55.3	67	81.9	98.3	110.0	121.2	151.9	193.1	216.0
	60 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	23	30	36	39	52	59	69	92	121	146	176	213	253	285	316	380	484	545
Starts/ hr.		₹ K	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	1	12.1	15	18.5	22	30	34	40	52	70	84	102	125	150	168	185	232	295	330
150 St	ц.	Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.9	10.1	12.5	14.7	19.9	24.5	29.8	36.3	49.4	59.2	72.1	86.5	104.8	117.9	131.0	163.6	206.2	232.4
	40 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	30	36	39	52	64	78	97	130	156	190	225	270	305	342	410	517	586
		κ	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13.2	15	18.5	22	30	37	45	55	75	6	110	132	160	180	200	250	315	355
	щ.	Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.2	10.1	12.5	14.7	19.9	24.5	29.8	36.3	49.4	59.2	72.1	86.5	104.8	117.9	131.0	163.6	206.2	232.8
	60 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	23	30	36	39	52	64	78	97	130	156	190	225	270	305	342	410	517	586
60 Starts/ hr.		N K	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	12.1	15	18.5	22	30	37	45	55	75	90	110	132	160	180	200	250	315	355
60 Sta	L.	Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.1	6.3	7.4	8.9	10.1	12.5	14.7	19.9	24.5	29.8	36.3	49.4	59.2	72.1	86.5	104.8	117.9	131.0	163.6	206.2	232.8
	40 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	30	36	39	52	64	78	97	130	156	190	225	270	305	342	410	517	586
		κw	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13.2	15	18.5	22	30	37	45	55	75	90	110	132	160	180	200	250	315	355
	Type Ref.	Construction	MC071433	MC080413	MC080433	MC09S433	MC09L453	MC10L453	MC11M453	MC13S4G3	MC13M4P3	MC16M4A3	MC16M4C3	MC16M4F3	MC16L4P3	MC18L473	MC20L433	MC22S413	MC22M433	MC25M413	MC28S413	MC28M433	MC31S413	MC31M433	MC31L453	MC31L463	MC31L473	MC35L413	MC35L433	MC35L453
	Frame	IEC	71	80	80	806	90L	100L	112M	132S	132M	160M	160M	160M	160L	180L	200L	225S	225M	250M		_	315S	315M	315L	315L	315L	355L	355L	355L

$\mathbf{\Psi}$
\cup

Performance table for 6-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist duty with DOL Starting Fr. 71 to 355L

Voltage : 415V ± 10% Frequency : 50Hz ± 5% Combined Variation : ± 10%

Ambient : 45°C Duty : S3 / S4

Ins. Class : F Temp. Rise : B Protection : IP55

1000 rpm (6-Pole)

	Net	B3 Const. kg	7	10	5	17	17	27	33	52	71	103	113	123	190	254	336	458	573	620	830	912	1010	1175	1231	1670	1670	1780	2000
	Rotor	GD² kgm²	0.0038	0.0060	0.0084	0.0160	0.0160	0.029	0.065	0.130	0.193	0.276	0.34	0.40	0.82	1.20	2.10	3.51	5.11	6.16	10.7	12.4	15.5	18.0	21.5	28.7	28.7	35.5	43.3
	Pullout Torque	to Rated Torque Ratio	1.90	2.20	2.50	2.60	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.60	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Starting	Starting	Torque to Rated Torque Ratio	1.70	1.90	2.25	2.30	2.30	2.25	2.25	2.30	2.30	2.30	2.30	2.25	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.20	2.20	2.20	2.20
With DOL Starting		Current to Rated Ratio	3.0	3.5	3.5	4.0	4.0	4.5	5.0	5.5	5.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
		RPM tt	800	830	860	006	006	920	920	935	935	935	935	935	960	970	970	975	975	980	985	985	988	988	988	066	066	066	066
		Rated T orque kg.m	0.45	0.65	0.85	1.2	1.62	2.3	3.92	5.73	6.8	8.3	10.6	12.5	15.2	18.6	26.1	30.0	37.0	44.7	59.3	74.2	88.7	108.4	130.1	147.6	157.4	206.6	236.1
	60 % CDF	Rated Current Amps.	1.43	2	2.7	e	4.2	6.5	9.1	13.5	16.3	18.1	22.3	27	31	35.1	47.7	53.1	65.0	80	106	133	157	191	229	263	282		422
	9	×0-	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	6.5	œ	10.2	12	15	18.5	26	30	37	45	60	75	06	110	132	150	160	210	240
300 Starts/ hr.		Rated Torque kg.m	0.45	0.65	0.85	1.2	1.6	2.3	3.9	5.7	6.8	9.7	11.5	13.5	16.2	20.1	28.1	34.0	40.0	47.7	64.3	79.1	93.7	118.3	140.0	157.4	172.2	221.4	260.7
30	40 % CDF	Rated Current Amps.	1.43	2	2.7	e	4.2	6.5	9.1	13.5	16.3	21	24	29	33	38	51.3	60.2	70.2	85.5	115	142	166	208	246	280	308	396	466
		κ	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	6.5	9.3	1	13	16	20	28	34	40	48	65	80	95	120	142	160	175	225	265
		Rated Torque kg.m	0.45	0.65	0.85	1.2	1.6	2.3	3.9	5.7	7.8	8.3	10.6	12.5	16.2	20.1	30.1	34.0	40.0	47.7	64.3	79.1	93.7	118.3	140.0	157.4	172.2	221.4	260.7
	60 % CDF	Rated Current Amps.	1.43	2	2.7	e	4.2	6.5	9.1	13.5	18.8	18	22.3	27	33	38	51	60	73	86	114	142	166	208	246	280	308	396	466
150 Starts/ hr.		κw	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	œ	10.2	12	16	20	28	34	40	48	65	80	95	120	142	160	175	225	265
150 S		Rated Torque kg.m	0.45	0.65	0.85	1.2	1.6	2.3	3.9	5.7	7.8	9.7	11.5	13.5	17.2	22.1	30.1	37.0	45.0	51.7	69.2	84.1	100.6	123.2	147.9	165.3	182.0	231.2	275.5
	40 % CDF	Rated Current Amps.	1.43	2	2.7	e	4.2	6.5	9.1	13.5	18.8	21	24	29	35	42	55	66	82	93	123	151	178	217	260	294	326	414	493
		Х Х Ч	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	1	13	17	22	30	37	45	52	20	85	102	125	150	168	185	235	280
	Tvna Raf	Construction	MC071633	MC080613	MC080633	MC09L6A3	MC09L653	MC10L653	MC11M653	MC13S6G3	MC13M6T3	MC16M633	MC16L663	MC16L673	MC18L633	MC20L633	MC22M623	MC25M603	MC28S613	MC28M633	MC31S613	MC31M633	MC31M653	MC31L673	MA31L693	MC35L6A3	MC35L613	MC35L633	MC35L653
	Frame	EC	71	80	80	90L	90L	100L	112M	132S	132M	160M	160L	160L	180L	200L	225M	250M	280S	280M	315S	315M	315M	315L	315L	355L	355L	355L	355L

Y

Performance table for 8-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist Duty with DOL Starting Fr. 71 to 355L

: 415V ±10% : 50Hz ±5% Frequency : 50Hz ± Combined Variation : ± 10%

Voltage

10

Ambient : 45°C Duty : S3 / S4

Ins. Class : F Temp. Rise : B Protection : IP55

750 rpm (8-Pole)

																						_		~		_	_	_
	Net Wt.	Const Kg	13	13	14	18	22	32	69	106	119	177	182	282	329	369	472	615	665	833	912	1010	1170	1340	1670	1780	1780	1780
	Rotor	GD ^z kgm²	0.011	0.011	0.014	0.023	0.027	0.06	0.133	0.299	0.40	0.62	0.72	1.32	1.95	2.41	3.72	5.83	6.86	10.7	12.4	15.5	18.0	21.5	28.7	35.5	35.5	35.5
	Pullout Torque	to rated Torque Ratio	2.30	2.10	2.40	2.00	2.30	2.30	2.30	2.40	2.50	2.50	2.50	2.30	2.50	2.50	2.50	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.30	2.40	2.30	2.30
Starting	Starting Torque	to Rated Torque Ratio	2.00	1.80	2.00	1.80	2.00	2.00	2.00	2.10	2.25	2.25	2.25	2.30	2.25	2.25	2.30	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.00	2.20	2.00	2.00
With DOL Starting	Starting Current	to Rated Current Ratio	3.0	3.0	3.0	3.5	3.5	4.0	4.0	5.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
	Rated Speed	RPM	700	680	680	655	680	700	710	710	710	710	710	720	720	720	730	730	730	735	735	735	735	735	740	740	740	740
		Rated Torque kg.m	0.5	0.6	0.9	1.3	1.6	2.1	4.1	6.2	8.2	10.3	11.7	14.9	20.3	25.0	29.4	40.0	49.4	59.6	79.5	99.4	119.3	152.4	184.3	204.0	210.6	236.9
	60 % CDF	Rated Current Amps.	1.43	1.76	2.39	2.78	3.63	4.64	7.14	9.82	12.8	16.5	17.8	21.1	30.4	37.4	41.1	57.6	71	88	118	146	175	224	263	290	300	338
arts/ hr.		kW	0.37	0.45	0.65	0.9	1.1	1.5	ю	4.5	9	7.5	8.5	11	15	18.5	22	30	37	45	60	75	90	115	140	155	160	180
300 Starts/ hr.		Rated Torque kg.m	0.5	0.8	1.1	1.6	2.1	3.1	5.1	7.5	8.9	11.7	12.8	17.6	23.0	27.1	34.7	45.4	53.4	66.3	88.8	106.0	132.5	165.6	197.4	223.8	230.3	263.2
	40 % CDF	Rated Current Amps.	1.43	2.15	2.76	3.4	4.95	6.8	8.8	12	13.9	18.5	19.5	25.0	34.5	40.5	48.5	65.0	76	98	132	156	195	244	281	318	328	375
		kW	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	6.5	8.5	9.3	13	17	20	26	34	40	50	67	80	100	125	150	170	175	200
		Rated Torque kg.m	0.5	0.6	1.1	1.6	2.1	3.1	5.1	7.5	8.9	11.7	12.8	17.6	23.0	27.1	34.7	45.4	53.4	66.3	88.8	106.0	132.5	165.6	197.4	223.8	230.3	263.2
	60 % CDF	Rated Current Amps.	1.43	1.76	2.76	3.4	4.95	6.8	8.8	12	13.9	18.5	19.4	25	34.5	40.5	48.5	65.2	76.4	98.2	132	156	195	243	281	318	328	375
arts/ hr.		κw	0.37	0.45	0.75	1.1	1.5	2.2	3.7	5.5	6.5	8.5	9.3	13	17	20	26	34	40	50	67	80	100	125	150	170	175	200
150 Starts/ hr.		Rated Torque kg.m	0.5	0.8	1.1	1.6	2.1	3.1	5.1	7.5	10.3	12.8	15.1	20.3	25.0	29.8	40.0	49.4	60.0	72.9	99.4	119.3	145.8	174.9	210.6	236.9	243.5	276.4
	40 % CDF	Rated Current Amps.	1.43	2.15	2.76	3.4	4.95	6.8	8.8	12	16	20	23	28.8	37.5	44.5	56	71	86	108	148	175	214	257	300	337	347	394
		kW	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	1	15	18.5	22	30	37	45	55	75	06	110	132	160	180	185	210
1	Type Ref.	B3 Construction	MC09S8A3	MC09S813	MC09L853	MC10L813	MC10L833	MC11M833	MC13S8G3	MC16M833	MC16L873	MC18M813	MC18L833	MC20L833	MC22S813	MC22M833	MC25M813	MC28S823	MC28M853	MC31S813	MC31M833	MC31M853	MC31L873	MC31L893	MC35L813	MC35L8B3	MC35L833	MC35L853
	Frame		S06	806	90L	100L	100L	112M	132S	160M	160L	180M	180L	200L	225S	225M	250M	280S	280M	315S	315M	315M	315L	315L	355L	355L	355L	355L

Y

CRANE & HOIST DUTY WITH INVERTER DRIVE ORS

Performance table for 4-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist Duty with Inverter (VVVF) Drive Fr. 71 to 355L

Voltage : 415V ± 10% Frequency : 50Hz ±5% Combined Variation : ± 10%

Ambient : 45° C Duty : 53 / 54

Ins. Class : F Temp. Rise : B Protection : IP55

1	0	υ
1	0	5
,		+
	2	
	ŝ	2
1	c	2
1	C	2
	Ц	2

	Net Wt. B3	const. kg	7	10	11	14	17	27	35	56	68	93	103	107	132	160	188	270	328	362	475	653	730	902	1010	1185	1262	1305	1680	1855	
	Rotor	kgm²	0.0033	0.0061	0.0072	0.0120	0.0160	0.0260	0.058	0.127	0.143	0.141	0.177	0.193	0.265	0.460	0.540	0.860	1.32	1.60	2.83	5.00	6.35	8.70	10.2	12.2	13.4	14.6	23.3	32.7	C 00
	Pullout Torque	to Rated Torque Ratio	2.75	2.75	2.80	2.75	2.80	3.00	2.80	2.90	2.90	2.80	2.80	2.80	2.50	2.50	2.50	2.60	2.60	2.50	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	
With DOL Starting	Starting Torque	to Rated Torque Ratio	2.25	2.30	2.30	2.25	2.30	2.30	2.50	2.25	2.30	2.25	2.25	2.25	2.10	2.25	2.25	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.25	2.25	0000
With	Starting Current	to Rated Current Ratio	3.7	4.5	5.0	5.0	4.8	6.0	6.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	
	Rated	RPM	1310	1340	1365	1385	1380	1380	1400	1410	1420	1440	1440	1440	1445	1450	1450	1455	1460	1460	1465	1470	1470	1475	1475	1480	1480	1480	1485	1485	
		Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.2	6.4	7.4	8.8	9.3	11.5	13.8	14.8	20.8	26.0	32.0	38.6	54.3	64.3	79.2	95.7	111.9	118.5	131.6	170.5	206.6	
	60 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	27	33	38	39	56	72	88	103	141	169	208	248	292	307	340	438	531	
rts/ hr.	9	kW	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	13.8	17	20.5	22	31	39	48	58	82	97	120	145	170	180	200	260	315	
300 Starts/ hr.		Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.2	6.4	7.4	8.8	9.3	11.5	14.8	16.1	22.1	27.4	33.4	40.6	56.3	67.6	82.5	99.1	117.1	126.4	138.2	177.1	219.7	
	40 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	27	33	41	42.5	59	74	91	108	146	177	216	256	305	328	356	455	565	
		kW	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	13.8	17	22	24	33	41	50	61	85	102	125	150	178	192	210	270	335	
		Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.2	6.4	7.4	8.8	10.1	12.5	13.8	16.1	22.1	27.4	33.4	40.6	56.3	67.6	82.5	99.1	117.1	126.4	138.2	177.1	219.7	
	60 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	30	36	38	42.5	59	74	91	108	147	177	216	256	305	328	356	455	565	
rts/ hr.		kW	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	15	18.5	20.5	24	33	41	50	61	85	102	125	150	178	192	210	270	335	
150 Starts/ hr.		Rated Torque kg.m	0.41	0.55	0.80	1.1	1.6	2.6	3.8	5.2	6.4	7.4	8.8	10.1	12.5	14.8	17.5	23.4	28.7	35.4	42.6	58.3	72.9	87	105.7	121.8	134.9	151.4	186.9	229.6	
	40 % CDF	Rated Current Amps.	1.56	1.8	3.1	3.9	5	8	12.4	14.8	18.1	22	25	30	36	41	46	62	77	96	113	152	190	228	274	317	350	390	480	590	
		kW	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	15	18.5	22	26	35	43	53	64	88	110	132	160	185	205	230	285	350	
	Type Ref	Construction	MC071433	MC080413	MC080433	MC095433	MC09L453	MC10L453	MC11M453	MC1354G3	MC13M4P3	MC16M4A3	MC16M4C3	MC16M4F3	MC16L4P3	MC18M433	MC18L473	MC20L433	MC22S413	MC22M433	MC25M413	MC285413	MC28M453	MC31S413	MC31M433	MC31L453	MC31L463	MC31L473	MC35L413	MC35L433	
	Frame	IEC	71	80	80	90S	30L	100L	112M	132S	132M	160M	160M	160M	160L	180M	180L	200L	225S	225M	250M	280S	280M	315S	315M	315L	315L	315L	355L	355L	

\cup

12

Performance table for 6-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist Duty with Inverter (VVVF) Drive Fr. 71 to 355L

Voltage : 415V ± 10% Frequency : 50Hz ±5% Combined Variation : ± 10%

Ambient : 45°C Duty : 53 / 54

Ins. Class : F Temp. Rise : B Protection : IP55

		Net Wt.	вз Const. kg	7	10	11	17	17	27	33	52	71	103	113	123	175	190	254	336	360	528	573	620	830	912	1010	1175	1231	1670	1780	2000
		Rotor	GD [∠] kgm²	0.0038	0.006	0.0084	0.016	0.016	0.029	0.065	0.130	0.193	0.28	0.34	0.40	0.68	0.82	1.20	2.10	2.42	3.72	5.11	6.16	10.7	12.4	15.5	18.0	21.5	28.7	35.5	43.30
		Pullout Torque	to kated Torque Ratio	1.90	2.20	2.50	2.60	2.75	2.75	2.75	2.75	2.75	2.60	2.60	2.60	2.60	2.60	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.5	2.50
Starting	זימו רווו פ	Starting Torque	to Rated Torque Ratio	1.70	1.90	2.25	2.30	2.30	2.25	2.25	2.30	2.30	2.30	2.30	2.25	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.20	2.20	2.20
With DOI Starting		Starting Current	to Rated Current Ratio	3.0	3.5	3.5	4.0	4.0	4.5	5.0	5.5	5.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
		Rated	Speed RPM	800	830	860	006	900	920	920	925	925	935	935	935	940	940	950	960	960	965	970	970	980	980	980	982	982	985	985	985
			Rated Torque kg.m	0.5	0.6	0.9	1.2	1.6	2.3	3.9	5.8	7.2	8.3	10.6	12.5	17.3	19.7	22.6	30.4	33.5	40.4	45.2	58.2	79.5	94.4	114.3	134.9	158.7	197.8	247.2	296.6
		60 % CDF	Rated Current Amps.	1.43	2	2.7	3	4.2	6.5	9.1	13.5	17.0	18.0	22.3	27	35	39	43	57	63	73	81	105	142	166	201	138	282	349	435	523
rts/hr	/ III.		kW	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	6.8	8	10.2	12	16.7	19	22	30	33	40	45	58	80	95	115	136	160	200	250	300
300 Starts / hr			Rated Torque kg.m	0.5	0.6	0.9	1.2	1.6	2.3	3.9	5.8	7.9	9.7	11.5	13.5	18.7	21.8	24.6	32.5	35.5	42.4	49.2	61.3	84.5	99.4	119.3	140.8	168.6	207.7	259.1	306.5
		40 % CDF	Rated Current Amps.	1.43	2	2.7	3	4.2	6.5	9.1	13.5	18.8	21	24	29	37	43	47	60	66	76	88	110	150	175	210	249	300	366	456	540
		4	Ň	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	18	21	24	32	35	42	49	61	85	100	120	142	170	210	262	310
			Rated Torque Kg.m	0.5	0.6	0.9	1.2	1.6	2.3	3.9	5.8	7.2	8.3	10.6	12.5	17.3	19.7	24.6	32.5	35.5	42.4	49.2	61.3	84.5	99.4	119.3	140.8	168.6	207.7	259.1	306.5
		60 % CDF	Rated Current Amps.	1.43	2	2.7	3	4.2	6.5	9.1	13.5	17	18.1	22.3	27	35	39	47	60	66	76	88	110	150	175	210	249	300	366	456	540
150 Starts/ hr			kW	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	6.8	8	10.2	12	16.7	19	24	32	35	42	49	61	85	100	120	142	170	210	262	310
150 St			Rated Torque kg.m	0.5	0.6	0.9	1.2	1.6	2.3	3.9	5.8	7.9	9.7	11.5	13.5	18.7	21.8	26.7	35.0	39.6	46.0	52.2	65.3	89.4	104.4	124.2	148.8	178.5	217.5	271.9	321.4
		40 % CDF	Rated Current Amps.	1.43	2	2.7	3.0	4.2	6.5	9.1	13.5	18.8	21	24	29	37	43	50	64	73	83	93	117	158	184	219	263	316	383	479	566
			κw	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	13	18	21	26	34.5	39	46	52	65	06	105	125	150	180	220	275	325
		Type Ref.	B3 Construction	MC071633	MC080613	MC080633	MC09L6A3	MC09L653	MC10L653	MC11M653	MC13S6G3	MC13M6T3	MC16M633	MC16L663	MC16L673	MC18L613	MC18L633	MC20L633	MC22M623	MC22M643	MC25M633	MC285613	MC28M633	MC31S613	MC31M633	MC31M653	MC31L673	MC31L693	MC35L613	MC35L633	MC35L653
		Frame size	IEC	71	80	80	106	90L	100L	112M	132S	132M	160M	160L	160L	180L	180L	200L	225M	225M	250M	280S	280M	315S	315M	315M	315L	315L	355L	355L	355L

Y

CRANE & HOIST DUTY WITH INVERTER DRIVE ORS

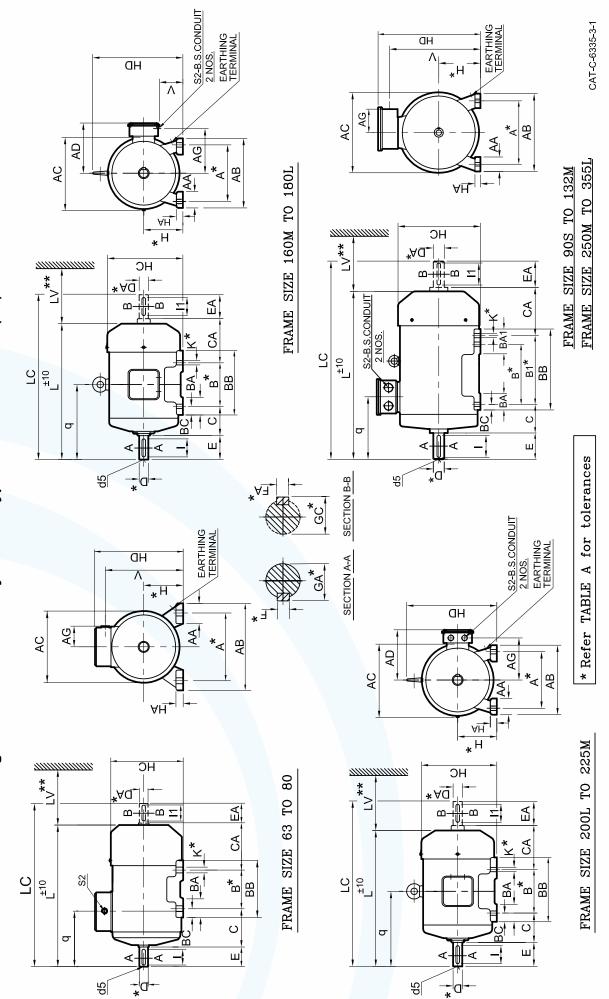
Performance table for 8-Pole motors

TEFC 3 Phase Squirrel Cage Induction Motors Crane & Hoist Duty with Inverter (VVVF) Drive Fr. 90S to 355L

Voltage: $415V \pm 10\%$ Frequency: $50Hz \pm 5\%$ Combined Variation: $\pm 10\%$

Ambient : 45°C Duty : 53 / 54

Ins. Class : F Temp. Rise : B Protection : IP55


_
٩
C
7
α
7
2
Ì
S
ĸ

130 Signation in the state in the s	300 Starts/ nr. 60 % CDF ted kW Rated Rated que kW Current Torque m. Amps. Kg.m .5 0.37 1.43 0.5 .8 0.45 1.76 0.6 .1 0.65 2.39 0.9 .6 0.9 2.78 1.3	Rated Current			
40% CDF 60% CDF 40% CDF 60% CDF 40% Current Rated Rated Rated Rated Current R	60 % CDF 60 % CDF Rated kW Current Amps. 0.37 1.43 0.45 1.76 0.65 2.39 0.9 2.78				
Rated Current Amps.Rated Torque Kg.mRated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Torque Mmps.Rated Mmps.Rated Amps.Rated 	Rated kW Current Amps. 0.37 1.43 0.45 1.76 0.65 2.39 0.9 2.78	_	Starting Torque Torque	Rotor	Net Wt.
1.43 0.55 0.37 1.43 0.55 0.37 1.43 2.15 0.88 0.45 1.76 0.6 0.55 2.15 2.15 0.8 0.45 1.76 0.6 0.55 2.15 2.76 1.1 0.75 2.76 1.1 0.75 2.76 3.4 1.6 1.1 3.4 1.6 1.1 3.4 3.4 3.4 1.5 3.1 2.2 6.8 3.1 3.4 3.4 4.95 2.11 1.5 4.95 2.1 3.7 8.8 5.1 8.8 5.1 3.7 8.8 5.1 3.7 8.8 14.4 11.4 7.8 11.4 8.9 6.5 14.4 14.4 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 14.5 7.8 107 7.8 17.4 15.5 14.5 15.7 13.3 24.5	0.37 1.43 0.45 1.76 0.65 2.39 0.9 2.78		to Rated Torque Torque Ratio Ratio	GD ² kgm ²	B3 Const. kg
2.15 0.8 0.45 1.76 0.75 2.76 1.1 0.75 2.76 3.4 1.6 1.1 0.75 2.76 1.1 0.75 2.76 3.4 1.6 1.1 0.75 2.76 1.1 0.75 2.76 3.4 1.6 1.1 3.4 1.6 1.1 3.4 3.4 4.95 2.1 1.5 4.95 2.1 1.5 4.95 8.8 5.1 3.7 8.8 5.1 3.7 8.8 13.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 9.6 17.4 10.7 7.8 17.4 15.5 14.5 7.8 113.7 10 24.5 15.5 14.5 115.7 107 24.5 24.5 15.5 15.1 115.7 15.3 24.5 24.5 </td <td>0.45 1.76 0.65 2.39 0.9 2.78</td> <td>700 3.0</td> <td>2.00 2.30</td> <td>0.011</td> <td>13</td>	0.45 1.76 0.65 2.39 0.9 2.78	700 3.0	2.00 2.30	0.011	13
2.76 1.1 0.75 2.76 1.1 0.75 2.76 1.1 3.4 1.6 1.1 3.4 1.6 1.1 3.4 1.6 1.1 3.4 1.5 2.76 1.1 3.4 1.5 2.76 1.1 3.4	0.65 2.39 0.9 2.78	680 3.0	1.80 2.10	0.011	13
3.4 1.6 1.1 3.4 1.6 1.1 3.4 1.5 3.4 1.5 3.4 3.4 4.95 2.1 1.5 4.95 2.1 1.5 4.95 2.1 1.5 4.95 6.8 3.1 2.2 6.8 3.1 2.2 6.8 1.8.8 5.1 3.7 8.8 5.1 3.7 8.8 8.8 5.1 3.7 8.8 5.1 3.7 8.8 1.13 8.2 5.5 11.4 7.8 17.4 8.9 17.4 1.15 14.5 10 21.1 11.5 24.5 14.4 1.15 11.5 24.5 15.8 11.5 24.5 33.3 256.5 14.7 10.7 7.8 11.5 24.5 26.7 19.4 39.3 26.2 19.4 39.3 26.7 19.4 39.3 26.2 19.4 39.3 27.8 33.1	0.9 2.78	680 3.0	2.00 2.40	0.014	14
4.95 2.1 1.5 4.95 2.1 1.5 4.95 5.1 5.5 4.95 5.1 5.5 6.8 5.1 5.5 6.8 5.5 6.8 5.5 6.8 5.5 6.8 5.5 5.5 122 6.8 5.5 122 6.8 5.5 122 6.8 5.5 122 6.8 14.4 5.5 122 5.5 122 5.5 14.4 8.9 6.5 14.4 8.9 6.5 14.4 10.7 7.8 17.4		655 3.5	1.80 2.00	0.023	18
6.8 3.1 2.2 6.8 3.1 2.2 6.8 5.1 3.7 6.8 8.8 5.1 3.7 8.8 5.1 3.7 8.8 5.1 3.7 8.8 13 8.2 5.5 12 7.5 5.5 12. 8.8 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 11.4 7.8 17.4 10.7 7.8 17.4 18.5 11.4 7.8 17.4 10.7 7.8 17.4 22.5 14.5 10 21 13.7 10 21 26.5 17.1 11.5 24.5 15.8 17.4 33.3 28.8 35.0 16 33 21.8 16 33 28.8 35.0 16.4 39.3 21.8 16 33 28.9 33.1 24.5 15.3 16.3 37.6 37.6 41.5 27	1.1 3.63 1.6	680 3.5	2.00 2.30	0.027	22
8.8 5.1 3.7 8.8 5.1 3.7 8.8 13 8.2 5.5 12 7.5 5.5 12 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 9.6 6.5 14.4 8.9 6.5 14.4 18.5 11.4 7.8 17.4 10.7 7.8 17.4 22.5 14.5 10 21 13.7 10 21 26.5 17.1 11.5 24.5 15.8 17.4 39.3 28.8 35.0 16 33 21.8 16 33 47 28.8 35.0 16.4 39.3 26.2 19.4 39.3 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 <td< td=""><td>1.5 4.64 2.1</td><td>700 4.0</td><td>2.00 2.30</td><td>0.06</td><td>32</td></td<>	1.5 4.64 2.1	700 4.0	2.00 2.30	0.06	32
13 8.2 5.5 12 7.5 5.5 12 15.5 9.6 6.5 14.4 8.9 6.5 14.4 15.5 9.6 6.5 14.4 8.9 6.5 14.4 18.5 11.4 7.8 17.4 10.7 7.8 17.4 22.5 14.5 10 2.1 11.5 24.5 13.7 10 21 22.5 14.5 10.5 24.5 15.8 11.5 24.5 26.5 17.1 11.5 24.5 13.2 24.5 28.8 35.0 16 39.3 26.2 19.4 39.3 41.5 27.7 19.4 39.3 26.2 19.4 39.3 50 33.1 23 47 31.1 23 47 51 28.3 37.6 31.1 23 47 39.3 50 33.1 23 64.0 48 93 76	3 7.14 4.1	710 4.0	2.00 2.30	0.133	69
15.5 9.6 6.5 14.4 8.9 6.5 14.4 18.5 11.4 7.8 17.4 10.7 7.8 17.4 22.5 14.5 10 21 13.7 10 21 26.5 17.1 11.5 24.5 15.8 11.5 24.5 26.5 17.1 11.5 24.5 15.8 11.5 24.5 28.8 35.0 16 33 21.8 16.5 24.5 28.8 35.0 16 33.3 21.8 16.5 24.5 50 33.1 23 24 31.1 23 47 50 33.1 23 63 47 39.3 63 67 45.7 32 63 43.0 32 63 63 67 45.7 32 63 47 39 76 76 82 56.0 39 76 48 93 76	5 11 6.9	710 5.0	2.10 2.40	0.299	106
18.5 11.4 7.8 17.4 10.7 7.8 17.4 22.5 14.5 10 21 13.7 10 21 26.5 17.1 11.5 24.5 15.8 11.5 24.5 26.5 17.1 11.5 24.5 15.8 11.5 24.5 28.8 35.0 16 33 26.2 19.4 39.3 41.5 27.7 19.4 39.3 26.2 19.4 39.3 50 33.1 23 47 31.1 23 47 51 33.1 23 63 33.1 23 63 67 45.7 32 63 43.0 32 63 67 45.7 32 63 43.0 32 63 63 82 56.0 39 76.9 38 76.9 58 113 101 69.4 48 93 64.0 48 93 <td>6 13.3 8.2</td> <td>710 5.0</td> <td>2.10 2.40</td> <td>0.344</td> <td>110</td>	6 13.3 8.2	710 5.0	2.10 2.40	0.344	110
22.5 14.5 10 21 13.7 10 21 26.5 17.1 11.5 24.5 15.8 15.5 24.5 28.8 35.0 16 33 21.8 16 33 41.5 27.7 19.4 39.3 26.2 19.4 39.3 41.5 27.7 19.4 39.3 26.2 19.4 39.3 50 33.1 23 47 31.1 23 47 51 33.1 23 63 33.1 23 63 67 33.1 23 63 31.1 23 63 67 33.1 23 63 32 63 63 82 56.0 39 76 39 76 76 82 56.0 39 76.9 58 113 76 101 69.4 48 93 64.0 76 76 1120 82.5	7 15.6 9.6	710 5.5	2.00 2.30	0.40	119
26.5 17.1 11.5 24.5 15.8 11.5 24.5 28.8 35.0 16 33 21.8 16 33 41.5 27.7 19.4 39.3 26.2 19.4 39.3 41.5 27.7 19.4 39.3 26.2 19.4 39.3 50 33.1 23 47 31.1 23 47 51 33.1 23 63 33.3 47 39.3 67 45.7 32 63 43.0 32 63 47 82 56.0 39 76 53 47 56 53 56 56 55 55 56 56 55 56 56 55 63 76 57 56 56 56 55 64 48 53 76 56 133 76 58 113 113 113 113 113 113 113 114 <	9.3 20 12.8	710 5.5	2.10 2.50	0.62	177
28.8 35.0 16 33 21.8 16 33 23 <	t 11 23.4 15.1	710 5.5	2.10 2.50	0.72	182
41.5 27.7 19.4 39.3 26.2 19.4 39.3 50 33.1 23 47 31.1 23 47 67 45.7 32 63 47 31.1 23 47 82 45.7 32 63 43.0 32 63 76 82 56.0 39 76 52.0 39 76 76 101 69.4 48 93 64.0 48 93 76 1120 82.2 58 113 76.9 58 113 1120 82.2 113 76.9 58 113 1120 80 155 106.0 80 155 1131 132.5 95 184 125.9 95 184 1131 114 125.9 153.7 116 223 184 1131 132.5 95 184 125.3 184 125 <	31 20.4	715 5.5	2.20 2.50	1.32	282
50 33.1 23 47 31.1 23 47 67 45.7 32 63 43.0 32 63 82 56.0 39 76 52.0 39 76 101 69.4 48 93 64.0 48 93 1120 82.2 58 113 76.9 58 113 120 82.2 58 113 76.9 58 113 120 82.2 58 113 76.9 58 113 120 120.5 95 184 125.9 95 184 131 132.5 95 184 125.9 95 184 133 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	25.0 18.5 37.5 25.0	720 5.5	2.10 2.20	1.95	329
67 45.7 32 63 43.0 32 63 63 82 56.0 39 76 52.0 39 76 101 69.4 48 93 64.0 48 93 120 82.2 58 113 76.9 58 113 120 82.2 58 113 76.9 58 113 120 82.2 58 113 76.9 58 113 1210 82.2 113 76.9 58 113 155 1213 132.5 95 184 125.9 95 184 133 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	. 22 45 29.8	720 5.5	2.10 2.20	2.41	369
82 56.0 39 76 52.0 39 76 101 69.4 48 93 64.0 48 93 120 82.2 58 113 76.9 58 113 120 82.2 58 113 76.9 58 113 155 112.6 80 155 106.0 80 155 153 132.5 95 184 125.9 95 184 133 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	0 30 59 40.3	725 5.5	2.20 2.50	3.72	472
101 69.4 48 93 64.0 48 93 93 120 82.2 58 113 76.9 58 113 165 112.6 80 155 106.0 80 155 193 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	37 72 49.4	730 5.5	2.20 2.20	5.83	615
120 82.2 58 113 76.9 58 113 165 112.6 80 155 106.0 80 155 193 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	0 45 87.5 60.0	730 5.5	2.20 2.20	6.86	665
165 112.6 80 155 106.0 80 155 193 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	0 55 107 72.9	735 6.0	2.10 2.40	10.7	833
193 132.5 95 184 125.9 95 184 234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	0 75 145 99.4	735 6.0	2.10 2.40	12.4	912
234 161.7 116 222 153.7 116 223 278 192.1 138 265 182.9 138 265	9 90 175 119.3	735 6.0	2.10 2.40	15.5	1010
278 192.1 138 265 182.9 138 265	7 110 211 145.8	735 6.0	2.10 2.40	18.0	1170
	9 132 254 174.9	735 6.0	2.10 2.40	21.5	1340
175 332 230.3 168 319.0 221.1 168 319 221.1	1 160 304 210.6	740 6.0	2.10 2.40	28.7	1670
220 417 289.6 210 398.0 276.4 210 398 276.4	4 200 380 263.2	740 6.0	2.00 2.30	35.5	1780
250 480 329.1 235 452.0 309.3 235 452 309.3	3 225 433 296.1	740 6.0	2.20 2.40	43.3	2000

CRANE & HOIST DUTY MOTORS OTOR

Dimensional Drawing: Crane and Hoist Duty Motors Type MC Foot Mounted (B3) TEFC series Frame 63-355L

E CRANE & HOIST DUTY MOTORS OTORS

) TEFC series Frame 63-355L
ot Mounted (B3)
rs Type MC Fo
Hoist Duty Motor
ing: Crane and
Dimensional Drawi

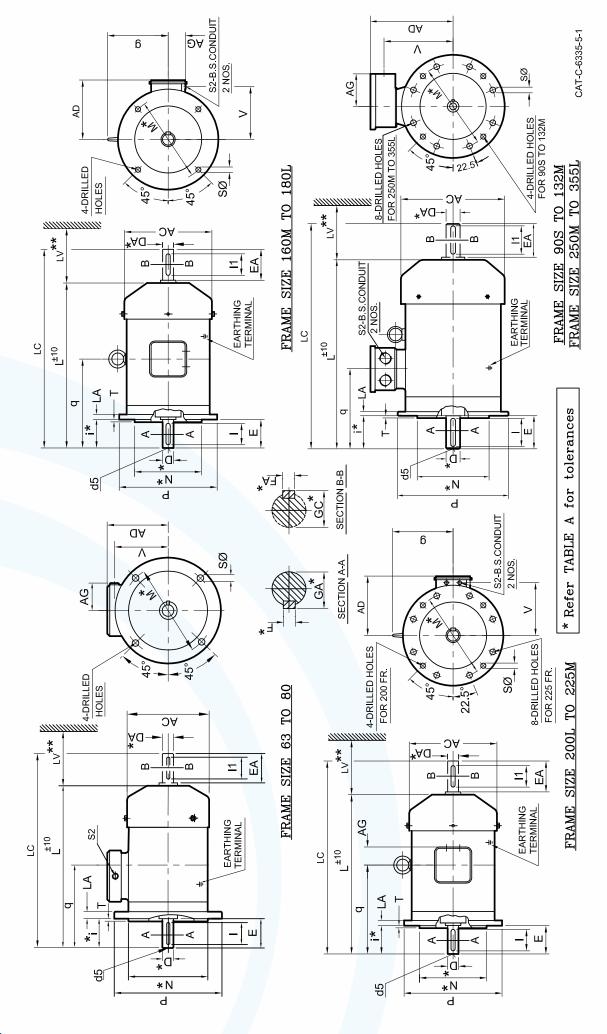
	d5	M4	M5	M6	QVQ	INIO	M10	M10	0	N N	110		0 1 1 C		M20		M20	M20	M20		MZU	M24
	- =	18	25	35	45	5 C	55	55		2	101				100		130	130	130	160	160	160
 _	GA* GC*	12.5	16	21.5	27	77	31	31	ž	+ -		0 0		<u>.</u>	59		64	69	79.5	85	85	100
SHAFT	н НА, К	4	5	9	0	o	8	8	C 7	2	ć	2	-		16		18	18	20	22	22	25
	EA	23	30	40	0	nc	60	60	¢,	δU	1		1	2	110		140	140	140	170	170	170
	¢,DÅ	11	14	19	10	z4	28	28	00	ŝ	CV	4	10	4 5	55		60	65	75	80	80	95
-BOX-	S2 B S C	3/4"	3/4"	3/4"		5/4	-	-	Ę	_	÷	_			2"	:		2"	2"	2"	2 1/2"	3"
IAL B	AG	40	40	40	53	20	56	56	ŝ	6	106	001	010	0 V	249		273	243	243	020	212	403
_r terminal	Ь	104	102	112	139	153	152	157	196	215	323	345	352	371	396	432.5	445	352	360	946	4 0	464
ΓTE	>	149	166	185		661	225	249		- RRV	ê	00	0	3				578	638	2700	1 20	850
Γ	۲۷ ۲	30	30	30	35	сс С	40	45	C	00	09	00	02	2	80		06	100	115	130	001	145
	AC	124	140	157	171		192	220		007	240	<u>0</u>	251	t 20	394		450	489	544	enn	000	685
	CA	75	83	94	α1	0	125	141	172	172	183	183	217	218	239	257	257	268	271	240	454	458
	ГС	241	278	324	374	399	448	471	561	599	721	765	799	838	897	996	991	1065	1160	1353	1518	1682
	L	206	234	267	302	327	366	388	459	497	585	629	679	717	772	842	857	914	1010	1167	1332	1491
	AD						ı	•	I			077	200	C07	319		344					Ι
GENERAI	НD	179	195	214		230	257	282	000	220	366	202	110	4	462		509	665	725	000	000	939
– GEI	НС	125	141	159		111	198	222		707	318 218	2	267	100	397		450	495	552	G15	C 10	693
	НA	7	7	6	÷	71	12	12	1	2	6	07	5	٩ ۷	32		34	42	42	λF	5 5	45
	BC	13	13	15	ά	2	21	2	2	23	č	۲ <u>۶</u>	8	ς,	28		28	49	40	46	46	73
	BA1				<u>ч</u>										1		1		149	155		
	BA	30	30	35	5	5	5 36	36	50	54		2	-	2	85		85	115	110	120	120	170
	AA	28		. 31	5		43.	47				χ	¢	60	85	1	85	100	490 100	540 120	593 120	110
	BB	126 100	135 110	124	125		174	174	180	218	250	294	281	319	355	336	361	425	490			770 11
L	AB	126	135	150	10 160	001	190	220	010	007		310		344	398		436	506	540		GZ0	710
	*⊻	7	7	10) 12	5	100 100	2		115		115	0 19		19) 24) 24		07 0	5 28
	*±	63	71	80	0	_	100	112				108 160 15		1 180	133 200		149 225	3 250	0 280		210 313	4 355
FIXING	0 *_	- 40	- 45	- 50	<u> </u>	00 -	- 63	- 20	0	000		2		- 121	13		4	- 168	9 190			- 254
(I – FI)	B [*] B1		-	0		5	0		0	0	0	4	-	6	2	ဖ	- -	6	8 419	6 457	8	0
		0 80	2 90	5 100	100	^ر 125	0 140	0 140	140	178	210	254	241	³ 279	8 305	286	6 311	6 349	7 368	406	508	0 630
_	A*	100	112	125	110		160	190				707 	020		318		356	406	457			610
	Pole	4	4&6	4&6	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6	4,6 & 8	4,6&8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8
	IEC Fr. size	63	71	80	806	90L	100L	112M	132S	132M	160M	160L	180M	180L	200L	225S	225M	250M	280S/M	315S/M	315L	355L

CAT-C-6335-3-2

All Dimensions are in mm unless otherwise specified.

□ Double shaft extension can be provided with shaft dimension identical to DE shaft.

Without Eye bolt
 Key / key way fit : h9 / N9


□ Also suitable for B6,B7,B8,V5 & V6 mounting as per IS 2253. ** Minimum distance for efficient cooling of motor to be maintained by user

	Specification		IS 1231		S 2048	IS: 2540	
	Sp	28Ø		80.95Ø			
	Tolerance	6 111.14.19.24.	k6 38,42,48Ø	m6 55,60,65,75,			
TABLE A	Dimension		D,DA		GA,GC,F,FA	d5(centering)	
TAE	Specification				IS: 1231		
	Tolerance	0.75	UPTO 280	OVER 280	7,10Ø	12,15Ø	19,24,28Ø
	Tole	07	-0.5	Ļ	+0.360	+0.430	+0.520
	Dimension	A,B	-	E		×	

CRANE & HOIST DUTY MOTORS OTORS

Dimensional Drawing: Crane and Hoist Duty Motors Type MC Flange Mounted (B5) TEFC series Frame 63-355L

TEFC series Frame 63-355L
: Flange Mounted (B5)
Motors Type MC
rane and Hoist Duty N
Dimensional Drawing: Cr

1							0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								0	0	0			4
	d5	M4	M5	M6	MB		M10	M10	M12		M16		M16		M20		M20	M20	M20			M24
	- 11	18	25	35	45	2	55	55	70		105		100)) -	100		130	130	130	160	160	160
SHAFT	ea* Gd*	12.5	16	21.5	77	1	31	31	41		45		515	2	59		64	69	79.5	85	85	100
– SH	н НА НА	4	5	9	α	>	8	∞	10		12		14	<u>t</u>	16		18	18	20	22	22	25
	E EA	23	30	40	ξÛ	3	60	60	80		110) - -	110		110		140	140	140	170	170	170
	* * D,DA	11	14	19	24	F 7	28	28	38		42	ļ	48	2	55		60	65	75	80	80	95
۲×	S2 B.S.C.	3/4"	3/4"	3/4"	3/4"	r õ	1"	1"	÷		-	-	1 1/2"		2"		2"	2"	2"	2"	2 1/2"	3"
AL BC	AG	40	40	40	52	1	56	56	63	}	63	8	76	5	172		172	243	243	020	017	403
ſ [−] TERMINAL BOX ¬	d	109	127	112	139	153	152	157	196	215	323	345	352	371	396	432.5	445	352	360	416	416	464
ΓTE	>	86	95	105	109 -	2	125	137	167-	5	186-	8	216-	2	249		273	328	358	C F F	4 10	495
Г	g				Ģ			•	ı		206	201	232	1	262		284		Ι			I
	۲۷**	30	30	30	35	}	40	45	50)	60	2	70		80		90	100	115	001	nci	145
	ГС	260	305	324	374	399	448	471	561	599	721	765	662	838	897	996	991	1065	1160	1353	1518	1682
RAL	L	225	261	267	302	327	366	388	459	497	585	629	679	717	772	842	857	914	1010	1167	1332	1491
-GENERAL	AC	124	140	157	174		195	220	260 -	2	316	2	354	5	394		450	489	544	600	000	685
	ΔA	116	124	134	140	2	157	170	206	2	3 00	077	265	201	319		344	415	445	646	c1c	584
	ΓA	6	6	10	10	2	11	11	12	!	12	2	5	2	15		16	18	18		77	25
	F	3	3.5	3.5	3.5	5	4	4	4	•	Ľ	ל	LC.	>	5		5	5	2	ų.	٥	9
Γ	S	10	10	12	12	1	15	15	15	2	¢,	2	10	2	19		19	19	19	۴c	24	24
	*_	23	30	40	50	8	60	60	80	8	110	2	110	2	110		140	140	140	170	0/1	170
FIXING	* M	115	130	165	165	202	215	215	265		300	000	300	222	350		400	500	500	600	000	740
	*z	95	110	130	130	202	180	180	230		760	2004	250	202	300		350	450	450	E CO	nec	680
	٩	140	160	200	200	222	250	250	300		360	000	350	2	400		450	550	550	000	000	800
	Pole	4	4&6	4&6	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8
	IEC Fr. size	63	71	80	S06	90L	100L	112M	132S	132M	160M	160L	180M	180L	200L	225S	225M	250M	280S/M	315S/M	315L	355L

□ Double shaft extension can be provided with shaft dimension identical to D.E.shaft □ 8 Nos Fixing Holes from 225S/M frame onwards IS 2048 IS 2540

Key / key way fit : h9 / N9

Without Eye bolt

Specification

IS: 1231

J6 11,14,19,24,28Ø Tolerance

Dimension D,DA

TABLE A

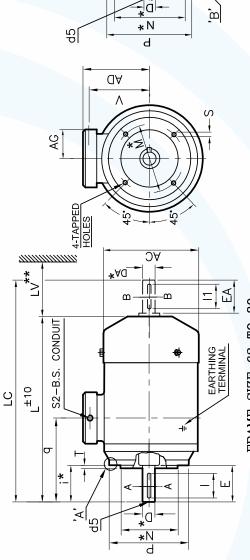
Γ

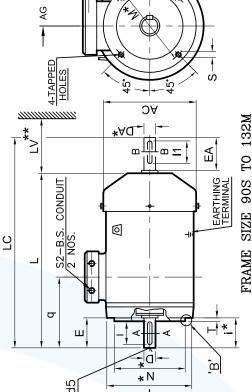
□ Also suitable for V1 & V3 mounting as per IS 2253

** Minimum distance for efficient cooling of motor to be maintained by user

All Dimensions are in mm unless otherwise specified.

CAT-C-6335-5-2

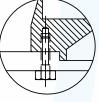

Dimension	Ĕ	Tolerance	Specification
Z	<u>9</u>	UPTO 450	
	js6	OVER 450	
14	±0.3	UPTO 265	5777 6
M	±0.5	OVER 265	
-	÷	UPTO 85	
_	±1.5	OVER 85	



18

CRANE & HOIST DUTY MOTORS

Dimensional Details: Crane and Hoist Duty Motors Type MC Face Mounted (B14) TEFC series Frame 63-132M


9

S2-CONDUIT

1

2NOS.

80
To
63
SIZE
FRAME

*	A-A
3	NO
Ŀ	SECT

*Refer TABLE A for tolerances

						-				-		
d5	M4	M5	MG	014	ΩMQ	M10	M10	C 1 1 1				
	18	25	35	Ļ	4 0	55	55	02	2			
F [*] GA [*] FA [*] GC [*]	12.5	16	21.5	۲ C	17	31	31	44	- +			
г* FA	4	5	9	c	0	8	8	10	2			
БA	23	30	40	C L	nç	60	60		00		+	,
DA*	11	14	19	2	7 4	28	28	00	ŝ		ve ho	2020
AG B.S.C.	3/4"	3/4"	3/4"		3/4		1"	Ę	-		(1) Without Eve holt	1
AG	40	40	40	C L	70	56	56	ç,	3	1,		:
ъ	104	102	12	139	153	152	157	196	215] `		'
>	98	95	105		. 601	125	137 157		. /0]			
g			- 105	6	Э	1	,					•
۲. ۲۷	30	30	30	25	ŝ	40	45	ξÛ	3			
LC	241	278	324	374	399	448	471	561	599	İ.		
L LC		2.5 124 140 234	267	302	327	3.5 157 195 366	388	459	497			
AC	124	140	157			195	220	U.S.C.	- 007	1		-
AD	116 124 206	124	3 134 157		040	157	170	900		1		I
T AD AC	2.5	2.5	ო	c	3 140 1/4	3.5	3.5		4 200 200	1		
s	M5X10	M6X10	M6X13			160 110 130 60 M8X12	M8X12 3.5 170 220	00/01/1		 4	-	
*_	23	30	40	0	nc.	60	60	00	20		5	1
*≥	75	85	100 40	1 1	2	130	130	370	C 7	TARI F A		_
*z	60	70	80	5	20	110	110	100	001	1		•
<u>م</u>	06	105	120 80	1 10	1 0	160	160	U I U	062			•
Pole	4	4&6	4&6	4,6 & 8	4,6 & 8	4,6 & 8	4,6 & 8 160 110 130 60	4,6 & 8	4&6			-
IEC Fr. size	63	71	80	806	30L	100L	112M	132S	132M			-

ENLARGEMENT OF CIRCLE 'B'

-SHAFT-

- TERMINAL BOX \neg

GENERAL-

FIXING

□ Also suitable for V19 & V18 mounting as per IS 2253 □ Key / key way fit : h9 / N9

Specification

J6 11,14,19,24,28Ø

38Ø

k6

GA,GC,F,FA d5(centering)

Tolerance

Dimension D,DA

Specification

Tolerance

Dimension

S : 2223

±0.3

ဖ Ŧ

z Σ

- Double shaft extension can be provided with shaft dimension identical to D.E. shaft
 ** Minimum distance for efficient cooling of motor to be maintained by user

IS 2048 IS 2540 S: 1231

All Dimensions are in mm unless otherwise specified.

CAT-C-6313-4-1

Application

Slipring induction motors are used for systems specifying limitations on starting current, for high inertia drives and for frequent starting. The motors are eminently suitable for high mechanical and electrical stresses encountered under heavy duty conditions such as excavating machines, stone crushers, main and auxiliary drives in rolling mills etc. These motors are well suited for smooth starting by using the resistance bank. These motors can also be used for variable speed drives, particularly for short periods and within a small speed range.

Insulation

The motors are provided with class F insulation scheme with temperature rise for stator windings limited to class B limits and rotor winding limited to class F limits.

Frame	Enclosure		als Box ition
Size	Materials	Standards	Options Available
100 to 160	Cast Iron	Тор	

Enclosures: (Material & T-Box Location)

Degree of Protection

All motors have IP55 degree of protection as per IS/IEC 60034-5. Higher degree of protection such as IP 56, IP 65 and IP 66 can be offered on request. All flange mounted motors are additionally provided with oil tight shaft protection on driving end side.

Note: For more details, refer to annexure II on page no. 121.

Mounting

Standard mounting is B3. In case B5 mounting is required, please refer to our sales office.

Additional Mechanical Features

The Slipring's at the drive end are accessible through hinged brushes on the top after opening the T-Box cover. The brush block assembly can hence easily be replaced as a whole unit without dismantling the motor. Terminals box of the motor contains 3 terminals for stator and 3 for rotor and 2 cable entries.

Starting and Speed Control

The maximum torque (which is approx. the pull-out torque) can be obtained for starting by correct selection of the resistance of the controller. By appropriately switching the resistance as the motor picks up speed, the mean torque during starting can be as high as 2.25 times the rated full load torque.

The values of rated current and voltage required for selecting the starting resistors are listed in the performance table of Slipring motors.

For reduced load, the rotor current reduces and is given by rated current × (reduced load/rated load) The rotor current while starting is proportional to the motor torque and determines the size of the starting resistance.

Fine speed variation is possible by inserting resistance in the rotor circuit calculated per phase as:

$$R_{c} = \frac{V_{r} \times (N_{s} - N) \times M_{n}}{3 \times I_{r} \times N_{s} \times M} - R_{r}$$

Where V_r , I_r and R_r are the open circuit voltage, rated current and resistance of the rotor, M_n and M are the rated and required torque values, and N_s and N are the synchronous and required speed respectively.

Since the cooling is reduced at lower speed, torque and output must be reduced as per the following table, otherwise a larger motor should be selected.

Speed %	100	90	80	70	60	50
Torque %	100	96	91	85	80	72
Output %	100	86	73	60	48	36

At lower speeds the torque speed characteristic is such that the speed varies inversely with the load. Below 50% rated speed, satisfactory operating characteristics may not be obtained even if the load torque remains constant.

If sufficiently ventilated by using a separate fan etc. the motor can provide the full load torque at reduced speed.

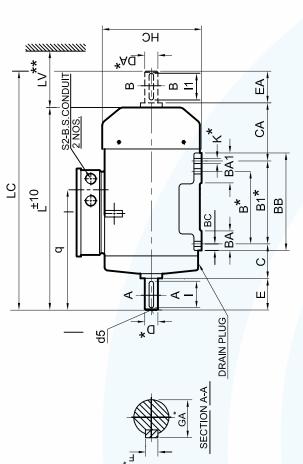
ଦୁଦ୍ୟ :		Wf	of kg.	37	40	58	61	06	94	129	139	37	40	58	61	06	94	129	139	37	40	58	61	06	94	129	139
			kgm² Load	0.09	0.10	0.17	0.19	0.38	0.45	0.77	0.94	0.09	0.10	0.17	0.19	0.38	0.45	0.77	0.94	0.09	0.10	0.17	0.19	0.38	0.45	0.77	0.94
Protection			GD ² Rotor	0.034	0.038	0.068	0.076	0.153	0.180	0.310	0.378	0.034	0.038	0.068	0.076	0.153	0.180	0.310	0.378	0.034	0.038	0.068	0.076	0.153	0.180	0.310	0.378
Prote			Rotor O.C.V.	65	80	06	115	110	140	165	240	65	80	06	115	110	140	165	240	65	80	6	115	110	140	165	240
		sdi	Rotor	12	1	17.1	17	21	23	27.2	25.2	12	1	16	16.5	19.5	22	25	24	10.5	5	15	16	18	20.5	21	21
		Line Amps	Sator	3.4	4.7	9	8.2	9.7	12.4	14.7	19.8	3.4	4.7	5.9	8.1	9.4	12	13.4	18.5	3.3	4.7	5.7	ω	6	11.5	11.2	16.5
	60 % CDF	Pullout	Torque to Rated Torque Ratio	2.50	3.30	2.70	2.80	3.00	2.90	2.50	2.10	2.50	3.30	2.80	3.00	3.30	3.00	2.70	2.25	2.80	3.30	3.00	3.10	3.50	3.20	3.20	2.50
			RPM	870	890	870	880	910	915	930	920	870	890	875	885	915	920	930	930	890	890	880	890	920	930	945	940
			κ	-	1.3	2.1	2.8	3.4	4.8	6.5	6	-	1.3	2	2.7	3.2	4.6	9	8.6	0.9	1.3	1.9	2.6	ო	4.4	5	7.5
ole)		Line Amps	Rotor	13	13	20.5	20.5	26	26.5	31.3	28	13	13	19.5	20	23.5	25	29	28	13	13	19.5	18.5	21	24	23	22.6
ר (6-P		Line	Sator	3.5	5	6.4	8.6	11	13.3	15.8	21	3.5	5	6.2	8.5	10.4	13.2	15.8	21	3.5	5	6.2	8.3	9.7	12.5	12.3	17.4
1000 rpm (6-Pole)	40 % CDF	Pullout	Torque to Rated Torque Ratio	2.2	2.8	2.2	2.3	2.6	2.5	2.1	1.8	2.2	2.8	2.4	2.4	2.8	2.7	2.3	1.9	2.2	2.8	2.4	2.6	3.0	2.7	2.9	2.4
F			Rated RPM	850	870	840	850	890	895	920	915	850	870	850	855	895	895	920	915	850	870	850	870	905	006	940	935
			¥ ۲		1.5	2.4	3.3	4	5.5	7	10		1.5	2.3	3.2	3.7	5.4	7	9.5	1.1	1.5	2.3	ო	3.4	5.1	5.5	∞
		Line Amps	Rotor	17	18.5	22.5	23.5	32.5	35	33	46.2	17	17	22.5	23.5	30	34	33	29.4	17	17	22.5	22	26	30	28	25.2
			Sator	3.8	5.4	9.8	9.6	12.5	16	18.1	25.3	3.8	5.3	6.8	9.6	11.9	15.1	18.1	23.1	3.8	5.3	6.8	9.2	5	14.6	15.2	19.8
	25%CD	Pullout	Torque to Rated Torque Ratio	1.75	2.00	2.20	2.00	2.10	1.90	2.00	1.60	1.75	2.20	2.00	2.00	2.20	2.00	2.00	1.80	1.75	2.20	2.00	2.10	2.60	2.20	2.40	2.10
			RPM RPM	800	785	820	830	860	870	006	890	800	810	820	830	865	870	006	006	800	810	820	840	890	875	920	920
			кw	1.3	1.9	2.6	3.8	4.8	6.6	ω	11.5	1.3	1.8	2.6	3.8	4.5	6.5	8	10.5	1.3	1.8	2.6	3.6	4	6.1	6.7	ი
tion : ± 10%		Type	Ref. B3 Construction	MP10L613	MP10L623	MP11M623	MP11M643	MP13M613	MP13M663	MP16L613	MP16L653	MP10L613	MP10L623	MP11M623	MP11M643	MP13M613	MP13M663	MP16M613	MP16L653	MP10L613	MP10L623	MP11M623	MP11M643	MP13M613	MP13M663	MP16M613	MP16L653
Combined Variation		Eramo	Size	100L	100L	112M	112M	132M	132M	160L	160L	100L	100L	112M	112M	132M	132M	160M	160L	100L	100L	112M	112M	132M	132M	160M	160L
Combin					ino	ų J	əd	STE	sta	09		J	no	u J	əd	sıs	sta	90	L	J	ino	r h	əd	SJE	ets	00	5

SLIPRING CRANE DUTY INDUCTION MOTORS ORS

Performance table for 6-Pole motors

TEFC 3 Phase Slipring Induction Motors Crane & Hoist Duty Fr. 100L To 160L

V oltage: 415V \pm 10%Frequency: 50Hz \pm 5%Combined Variation: \pm 10%


Ambient : 45°C Duty : S3/S4/S5

Ins. Class Stator/Rotor : F/F Temp. Rise Stator/Rotor : B/F Protection : IP55

20

 \mathbb{Y}

Dimensional Details: Slip Ring Motor Type MP Foot Mounted (B3) TEFC Frame 100L-160 M/L

	H H H H H H H H H H H
AG	

A_∃

SECTION B-B

С

	d5	0				
		ž	M	M1:	M16	
	- 	55 M10	55 M10	70	105	
	GA* GC	3.	31	80 10 41 70 M12	45	
-SHAFT—	н НА Н	ø	ω	10	12	
	БA	28 60	60	80	110	
	D,DÅ	28	28 60	38	42 110 12 45 105 M16	
۲xo	CA AC LV V 9 AG B.S.C. D,DA EA FA GC*	3/4"	3/4"	715 288 260 50 266 364 74 3/4"	-	
AL B	AG	61	63	74	88	
FTERMINAL BOX	d	295	316	364	434	
Ë	>	210	230	266	315	
Г	** 	40	45	50	60	
	AC	195	220	260	316	
	CA	247	290	288	287 316 60 315 434 88	
	LC	570 247 195 40 210 295 61	620 290 220 45 230 316 63	715	866	
	L	488		612		
-GENERAL -	무	18 14 198 252 488	18 15 222 281 537	20 17 262 317 612	20 20 318 366 730	
Щ Ш	BC HA HC HD	198	222	262	318	
	НA	14	15	17	20	
	BC	18	18	20	20	
	BA	50	50	54	70	
	AA	54	62	64	60	
	BB	176	70 112 12 230 176 62	218	294	
L	AB	500	230	256	314	
Г	*_	12	12	12 2	15 (
	*_	100	112	132	160	1
 ପ୍ର	U	63	70	68	105	
- FIXING -	на На На На На На На На На На На На На На			178	254	
Ī	* <u></u>	40	40	140	210	
	A* B* B1* C H* K* AB BB AA BA BA1	160 1	190	216	254 2	
	Pole	100L 4,6 160 140 — 63 100 12 200 176 54	4,6	4,6	4,6	
	IEC Fr. size	100L	112M 4,6 190 140	132S/M 4,6 216 140 178 89 132 12 256 218 64	160M/L 4, 6 254 210 254 105 160 15 314 294 60 70 115	

– Key / key way fit : h9 / N9

Specification

Dimension D,DA

Specification

Tolerance

Dimension A,B т ¥

±0.75 -0.5

TABLE A

IS: 1231

38,42Ø 28Ø Tolerance

> х0 <u>9</u>

> > GA,GC,F,FA d5(centerIng)

S: 1231

+0.430 12,150

IS 2048 IS 2540

- Double shaft extension can be provided with shaft dimension
- identical to D.E.shaft
- ** Minimum distance for efficient cooling of motor to be maintained by user Also suitable for B6,B7,B8,V5 & V6 mounting as per IS 2253
 - All dimensions are in mm unless otherwise specified. CAT-P-1016-3-1

es P	
щõ	
rABLE A lerances	
TAI	
t er	
Refer for t	
Å Å	

Bharat Bijlee has developed a special series of Cane un-loader motors for unloading cane at sugar mills. These motors are designed after thorough study of the Cane un-loader application in sugar mills.

Application

These motors are primarily crane duty motors suitable for very high no. of switching per hour. These motors can be used for lifting applications where high switching frequencies lead to overheating and burnouts. These motors are developed with specially designed squirrel cage rotor and they readily replace Slipring induction motors.

Salient Features

Very high no. of switching: These motors are suitable for very high no. of switching i.e. 900 starts/stop per hour which includes inching and plugging.

Special winding & impregnation: The stators are wound with dual coated (DC) winding wires as per IS13730 part 13 and winding is impregnated with VPI process. This improves the thermal withstand capacity of the motor.

Robust construction: Shaft material is given special heat treatment to withstand high intermittent load. These motors have special squirrel cage die cast rotors which ensure minimum maintenance and trouble free operation.

Forced cooling: This ensures continuous cooling of the motor.

Built in thermal protection: Built in thermal protection is provided by embedding thermostats in the winding. This ensures protection of the motor against failure due to excessive heating caused by severe starting duty, single phasing, overloading, low voltage etc.

Compact design: Compact in size as the auxiliary fan motor used for forced Cooling is an integral part of the main motor.

Product Range

Frame Size	kW range
160L to 225M	11 to 30

Electrical Features

Operating Conditions	:
Supply Voltage	: 415V±10%
Frequency	: 50Hz±5%
Combined Variation	: ±10%
Duty	: S5, 50% CDF, 900 Switching
	per hour.

Ambient

Motors are designed for ambient temperature of 45°C.

Altitude

Motor are designed for altitude up to 1000m above mean sea level.

Insulation

The motors are provided with class F insulation scheme with temperature limited to class B limits.

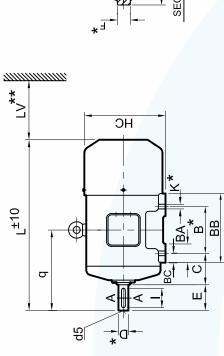
Mechanical Features

Construction:

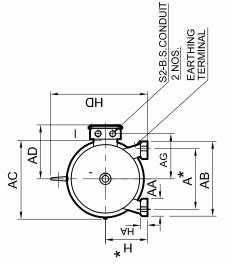
TEFC Horizontal foot mounting (B3) as per IS 1231. TEFC Horizontal flange mounting (B5) as per IS 2223.

Terminals Box Location

As standard practice terminal box will be located on RHS when viewed from DE side. However motors can be offered with Terminal Box location on LHS when viewed from DE side or top on request.



Rated Ou	Rated Output		Turne Def. D2	•	ng Charac Rated out	cteristic at put	Starting Current	Starting Current	Pullout torque	Deter	Net
kW	НР	Frame Size IEC	Type Ref. B3 Construction	Rated Speed RPM	Rated Current Amps	Rated Torque kg.m	to rated current Ratio	to rated Torque Ratio	to rated torque Ratio	Rotor GD ² kgm ²	Weight B3 Constrn. kg
11	15	160L	MF16L673	965	21.6	11.1	5.5	2.25	2.30	0.4	140
15	20	180M	MF18L613	940	29	15.5	5.5	2.25	2.30	0.68	190
18.5	25	180L	MF18L633	950	36.9	19.0	5.5	2.25	2.30	0.82	220
22	30	200L	MF20L633	955	43	22.4	5.5	2.25	2.30	1.2	260
30	40	225M	MF22M643	975	54	30.0	5.5	2.25	2.30	2.42	395


 \forall

& CANE UNLOADER MOTORS VIOTORS

Dimensional Details: Cane Unloader Motor Type MF Foot Mounted (B3) TEFC Frame 160L-225 M

	d5	M16	M16	100 M20	M20
	_	105	100	100	130 M20
	F* GA*	45 105 M16	51.5	59	64
-SHAFT-	* L	12	14	16	18
	ш	110 12	110	110 16	140 18
	*	42	48 110 14 51.5 100 M16	55	60
_ X	q AG B.S.C.	"	70 371 225 1 1/2"	2"	л <u>"</u>
—T. BOX—	AG	204	225	249	445 273
Ē	d	345 204	371	396 249	
Γ	AC LV	60	70	80	90
	AC	316	354	394	450
		779 316	922 354	965	1037 450
 	AD	246		319	344
GENERAL	ДH	70 23 20 318 366	70 23 26 357 412 280	462	509
Ы Ц	BC HA HC	318	357	28 32 397	28 34 450
	HA	20	26	32	34
	BC	23	23	28	28
	BA	70	70	85	85
	AA	58	65	85	85
	BB AA	294	319	355	361
	AB	310	344	398	436
Г	*⊻	15 ;	15 3	19	19
	* H	160	180	200	225
FIXING	U	. 801	121	133	149
FIX	B* C H* K* AB	54	623	05	311
	>*≺	254 254 108 160 15 310 294	279 279 121 180 15 344 319	318 305 133 200 19 398 355	356 311 149 225 19 436 361
	Pole	6 2	6 2	6 3	<u>я</u> 9
	IEC Fr. size	160L	180L	200L	225M

All dimensions are in mm unless otherwise specified. CAT-F-1622-3-1

Key / key way fit: h9/N9 ** Minimum distance for efficient cooling of motor to be maintained by user

Online re-greasing arrangement is provided in frame sizes 225M
 Also suitable for B6,B7,B8,V5 & V6 mounting as per IS 2253

Dimension	Τc	Tolerance	Specification
C	k6	42,48 Ø	1001
J	m6	25,60 Ø	1021.01
GA,F			IS: 2540
d5(centering)			IS 2540

	Specification			IS : 1231	
	Tolerance	75	5	15 Ø	19 Ø
L	Toler	±0.75	-0.5	+0.430	+0.520
	Dimension	A,B	т	٢	۷

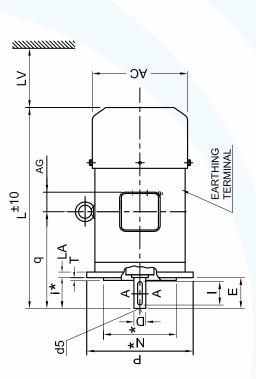
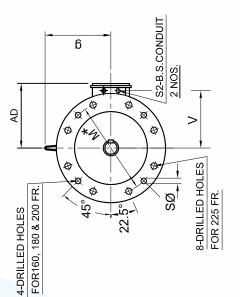

I	
	ASS
	ыç
	r TABLE A tolerances
	AE
]€
	r tr
	Refer for t
	Ref for
	[*

TABLE A


23

R CANE UNLOADER MOTORS VIOTORS

	d5	M16	M16	M20	M20
	_	105	100	100	130
SHAFT	F* GA*	45	110 14 51.5	59	64
HS	۶	12	14	16	18
	ш	110 12 45	110	110 16	60 140 18
	* O	5	48	55	60
	q AG B.S.C.	-1	70 232 225 371 97 11/2" 48	2"	284 273 445 172 2"
—T. BOX—	AG	63	67	262 249 396 172	172
ш. Г.	ъ	345	371	396	445
	>	204	225	249	273
	D	206 204 345 63	232	262	284
	**	60	70	80	06
		622	922	965	450 1037
RAL -	AC	316	354	394	450
General	LA AD AC	246	13 280	319	344
	LA	13	13	15	16
L		5	5	5	5
	S	19	19	19	19
	*	110	110	110	140
FIXING	N* M*	300 110	300 110	350	400 140
	*Z	250	250	300	350
L	Ъ	350	350	400	450
	Pole	9	9	9	9
	IEC Fr size	160L	180L	200L	225M

ç		Dimension	Τo	Tolerance	Specification
		C	9 X	42,48 Ø	1001.0
		נ	9W	55,60 Ø	1071.0
	I	GA.F			S: 2048

Dimension	L	Tolerance	Specification
z	9[OVER 450	
Σ	±0.5	OVER 265	0 2223
	±1.5	OVER 85	

A	S
	ces
БÌ	ä
BL	6
	eran
LA	<u>e</u>
	ō
L.	ب
	e .
efe	or
R	4 -
*	

TABLE A

All dimensions are in mm unless otherwise specified.

** Minimum distance for efficient cooling of motor to be maintained by user

Online re-greasing arrangement is provided in frame sizes 225M

ⁿ Also suitable for V1 & V3 mounting as per IS 2253

Berg / key way fit : h9 / N9

IS 2540

d5(centering)

CAT-F-1622-5-1

24

E

Brake motors are offered for various application requiring almost instantaneous stopping if driven with load. These motors are offered in frame size 71 to 132. Their operation is of "fail safe" type, i.e., the brake applied when, power to the motor is switched off, or, if power failure occurs.

Enclosures:	(Material 8	& T-Box location)
--------------------	-------------	-------------------

		Terminal B	ox Location
Frame Sizes	Enclosure Materials	Standard	Option Available
71-80	Aluminum	Тор	
90S-132M	90S-132M Cast Iron		LHS
903-152IVI	Cast ITON	RHS	TOP

Construction

A Brake motor is an integral combination of an A.C induction motor and a disc type, fail safe, electromagnetic Brake unit. It consists of following:

- I) A.C. induction motor.
- II) Encapsulated brake coil housed in the non driving side end-cover.
- III) Brake liner attached to the armature disc at its interface with the cooling fan.
- IV) Cooling fan.
- V) The rectifier unit is provided inside the terminal box. It converts A.C. supply into D.C. supply for the brake coil.

Operation

Under no power condition brake springs keep the brake liner pressed against the cooling fan. This prevents rotor shaft rotation, because, the fan is keyed to it. When power is switched on, the brake coil gets energized through the Rectifier unit. It instantly attracts the armature disc by overcoming the spring force. This action results in releasing of the fan allowing the rotor to rotate freely.

When the power fails or when it is switched off, the brake coil gets de-energized. This results in the springs pressing the brake liner against cooling fan, i.e. returning armature disc to its original position. This causes almost instantaneous braking of rotor. Fail safe condition is thus ensured.

For applications, where total load stopping time is not very critical, A.C. side interruption can be used. However for application where faster braking is required, D.C. side interruption should be used. An additional contactor interlocked with main contactor should be used.

Special Features

- a) Being simple and rugged in construction these motors need very little maintenance.
- b) No separate DC supply is necessary for brake coil energisation, because a rectifier unit is provided. The rectifier is open type and fixed between the two terminals inside the terminals box. Being open type, it ensures good heat dissipation and is very easy to replace. Varistor is provided across the DC terminals to protect the brake coil and rectifier against line and switching surges.
- c) Special brake liner is used, which ensures that, the braking torque value remains quite stable throughout the use. Compensation for liner wear is done by advancing the position of the fan by tightening the castle nut at the non-drive end. The design of brake motor facilitates a very easy replacement of armature disc and brake liner assembly.
- d) Since the fan serves as a braking surface (unlike some other designs), it also serves to cool the brake coil and the motor. These brake motors being fan-cooled are available in smaller frame size than other Brake motors which are surface cooled. Therefore, these motor are more compact and economical for a given application.
- e) For Crane and Hoist duty application Brake motors are offered with special rotors to suit their respective duties. These rotors are specially suited for S3 and S4 duty normally encountered in Crane and Hoist application.
- f) Mechanical manual release of the brake as an optional feature is available from 90 to 132 frames. In case of power failure, the brake can be released manually with a lever.
- g) The working of the rectifier unit has been successfully type tested for one million operations.

Bearing Details

Œ

Frame Size	Bearing Nos.	C3 Clearance
Frame Size	DE	NDE
71	6202 2Z	6203 2Z
80	6004 2Z	6204 2Z
90S, 90L	6205 2Z	6305 2Z
100L	6206 2Z	6307 2Z
112M	6206 2Z	6308 2Z
132S, 132M	6208 2Z	6308 2Z

Applications

Brake Motors are used for numerous applications. A few of them are listed below:

- Textile Machinery
- Machine Tools
- Printing Machine
- Crane and Hoists
- Material Handling Equipments
- Leather Processing Machines
- Geared Motors
- Cable Reeling Drums
- Rolling Mills

Enquiry Details

When placing an enquiry kindly furnish the following information.

- 1. Application details
- 2. Output and speed

3. Duty cycle with number of starts/stops per hour

- 4. Ambient temperature and special environmental factors likely to affect the motor, if any
- 5. Method of mounting
- 6. Load GD² referred to motor shaft *
- 7. Braking torque required *
- 8. Maximum permissible stopping time
- 9. Any other special features required
- * These are inter-related parameters and related by following formula:

$$GD^2 \times N$$

Total Stopping time $T_s = ---+ t_{app}$ 375 × T

Where

- T = Braking torque in kgm
- $GD^2 = Ioad GD^2 + rotor GD^2$
- N = Speed of rotation in r.p.m.
- t_{app} = brake application time

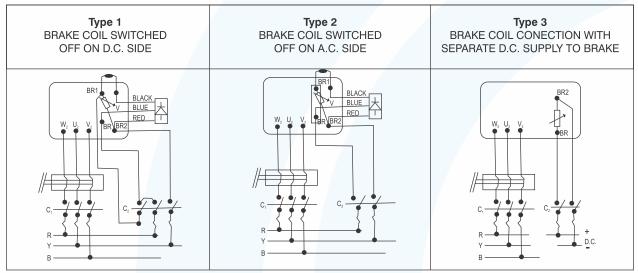
Voltage	: 415V ±10%	Ambient	:	50°C	Ins. Class	:	F
Frequency	: 50Hz ±5%	Duty	:	S1	Temp. Rise	:	В
Combined Variation	: ± 10%				Protection	:	IP55

Performance Table - For Brake Part

Frame		Outputs (kW)			*Brake release		olication time	Braking
Size	2P	4P	6P	8P	time (ms)	AC Side Interruption	DC Side Interruption	Torque (kgm)
71	0.37	0.25	0.25	-	50	135	25	0.5
	0.55	0.37	-	-	50	135	25	0.5
80	0.75	0.55	0.37	-	55	225	45	1.0
	1.1	0.75	0.55	-	55	225	45	1.0
90S	1.5	1.1	0.75	0.37	100	260	50	2.0
90L	2.2	1.5	1.1	0.55	100	260	50	2.0
100L	3.7	2.2	1.5	0.75	135	270	50	4.0
	-	-		1.1	135	270	50	4.0
112M	-	3.7	2.2	1.5	145	290	60	5.0
132M	5.5,7.5	5.5	3.7	2.2	145	270	60	5.0
132M	9.3	7.5	5.5	-	145	270	60	5.0

1. Other Braking torque values up to 40% higher can be given for special applications.

2. Other output can be offered on request where feasible.

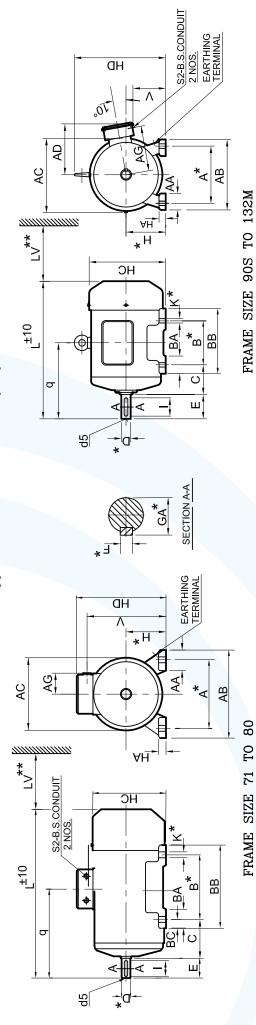

*Brake release time: The time interval between the instant the supply to the brake coil is switched on, to the instant the brake is released.

**Brake application time: The time interval between the instant the supply to the brake coil is interrupted to the instant the brake is applied.

The value depends on whether the circuit is interrupted on AC side or DC side.

For performance details of motor parts, please refer Industrial Motor section of this catalogue.

Brake Coil Connections


THE MOTOR MUST NEVER BE SWITCHED ON UNLESS THE BRAKE IS ENERGISED AND BRAKE SHOULD NEVER BE DE-ENERGISED WHEN THE MOTOR IS ON, THE INTERLOCKING OF TWO CONTACTS IS ABSOLUTELY NECESSARY.

28

DC BRAKE MOTORS V V OTORS

Dimensional Details: Brake Motors Type MB Foot Mounted (B3) TEFC Series Frame 71-132M

	d5	M5	M6	ΝQ	N	M10	M10	70 M12	
	_	25	35	15		55	55	C K	2
FT —	F* GA*	16	21.5	70		31	31	41	- F
-SHAFT-	۲ *	5	9	α	b	8	8	6	2
	Е	30	40	ξÛ		60	60	ы	3
L	*0	14	19	10	t V	28	28	38	3
гхо	q AG B.S.C.	3/4"	3/4"	3/Л"	5	1"	1"	,	
_L TERMINAL BOX _J	AG	53	53	124	169	193 143	156	178	2
RMIN	b	141	170	156	169	193	200	239	258
ΞĘ	^	175	194	50	22	66	80	104	5
Г	LV** V	30	30	25	3	40	45	50	8
	AC	140	157	171	t -	195	220	260	2
	L	279	331	355	380	439	456	512	550
	AD			170	1	198	200	731	- 04
AL —	ДН	216	235	€		235	260	308	2
GENERAL	BC HA HC	141	159	18 13 177		21 14 198	222	23 17 262	202
С Г	НA	7	6	7	2	14	21 15	17	-
	BC	13	15	ά	2		21	23	2
	BA	30	35	51	P	50	51	50	54
	AA	31	31	ξÛ	8	54	62	БД	
	BB	110	10 150 124	130	155	100 12 200 176	176	180	218
L	AB	135	150	J 56 90 10 180	3	200	230	130 10 256	
Γ	* K	7	10	10	2	12	12	10	1
 ()	*±	71	80	ο	3	100	112	132	101
FIXING	*ల	45	50	56	3	63	70	68))
ш 	* œ	06	100	100	125	140	140	140	178
L	*∀	112	125	110		160	190	016	2
	Pole	2,4 & 6 112	2,4 & 6 125 100 50	2,4,6 & 8 _{1 40} 100	2,4,6 & 8	100L 2,4,6 & 8 160 140 63	4,6 & 8 190 140 70 112 12 230 176	132S 2,4,6 & 8	132M 2,4,6 & 8
	IEC Fr. size	71	80	80S	90L	100L	112M	132S	132M

Tolerance	14,19,24,28Ø	~~~~
	j6	-
Dimension	C	2
Specification		
Tolerance	±0.75	L

∢
Щ
AB

Dimer	2	ב	GA,F	d5(cent-
Specification			IS: 1231	
ance	±0.75	5	7,10Ø	12Ø
Tolerance	.0±	-0.5	+0.360	+0.430
Dimension	A,B	н	×	

er TABLE A tolerances	
Refe for	

*

Specification IS 2048 IS 2540 IS: 1231 k6 | 38Ø tering)

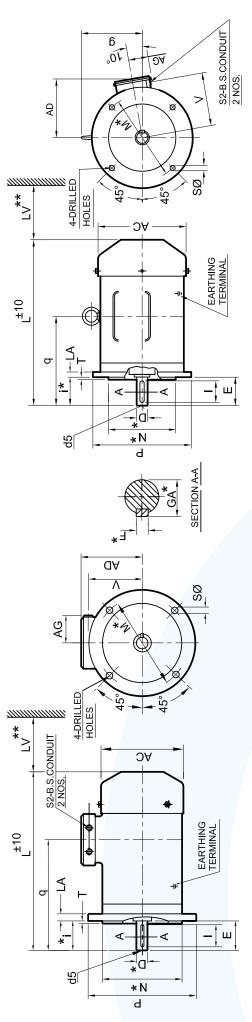
① Without Eye bolt

** Minimum distance for efficient cooling of motor

to be maintained by user

CAT-B-7113-3-1

All dimensions are in mm unless otherwise specified.


Key / key way fit : h9/N9

a Also suitable for B6,B7,B8,V5 & V6 mounting as per IS 2253

DC BRAKE MOTORS V OTORS

Dimensional Details: Brake Motors Type MB Flange Mounted (B5) TEFC Series Frame 71-132M

FRAME SIZE 71 TO 80

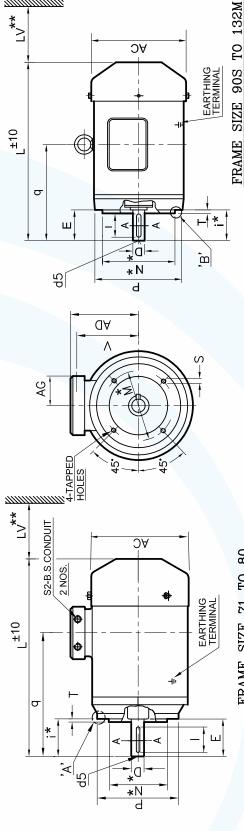
FRAME SIZE 90S TO 132M

Г	d5	M5	M6	NIO	NIO	M10	M10	M12	7 1 1
	_	25	35	u T	40 0	55	55	ÛŹ	2
VFT	GA*	16	21.5	۲. ۲.	71	31	31	÷	Ē
- SHAFT	* L	5	9	c	ø	8	8	ç	2
	ш	30	40		DC DC	60	60	UB	3
Ц	* 0	14	19	ā	24	28	28	äc	2
ГXЛ	q AG B.S.C.	3/4"	3/4"		94 1	1"	-1	=	-
AL B(AG	53	53	г. С 1	ŝ	60	60	C y	8
	σ	168	170	156	169	193	200	239	258
Ë	>	104	114	101	14	143	156	10	
Г	**	30	30	35		40	45	ξŪ	
	g			6	Э	135	148	176	0/1
4L	_	306	331	355	380	439	456	512	550
GENERAL	AC	140	157	171	t -	195	220	260	2007
	AD	145	155	170	112	198	211	737	
	ΓA	6	10	ç	2	11	11	ć	4
Ц	Т	3.5	3.5	2 5	0°0	4	4		4
Л	ა	10	12	ć	2	15	15	u T	2
	*	0E	40	U U	20	09	60	Ua	8
FIXING	*≥	130	165	165		215	215	JEE	C07
	*z	110	130	120		180	180	220	2007
	٩	160	200	000	2002	250	250	006	2000
	Pole	2,4 & 6	2,4 & 6	2,4,6 & 8	2,4,6 & 8	2,4,6 & 8	4,6 & 8	2,4,6 & 8	2,4,6 & 8
	IEC Fr. size	71	80	806	30L	100L	112M	132S	132M

(1) Without Eye bolt Specification IS 2048 IS 2540 IS: 1231 14,19,24,28Ø Tolerance 38Ø 66 <u>9</u> d5(centering) Dimension GA,F Specification S 2223 Tolerance ±0.3 <u>9</u> Ŧ Dimension z Σ * Refer TABLE A for tolerances

TABLE A

Also suitable for V19 & v18 mounting as per IS 2253
 Key / key way fit : h9 / N9
 Minimum distance for efficient cooling of motor


to be maintained by user All Dimensions are in mm unless otherwise specified.

are in mm uniess otherwise specified. CAT-B-7113-5-1

DC BRAKE MOTORS

Dimensional Details: Brake Motors Type MB Face Mounted (B14) TEFC Series Frame 71-132M

S2 - B.S. CONDUIT 2 NOS

4 ω

.01

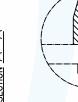
ÐA

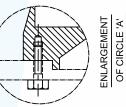
6

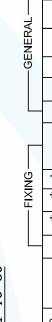
ţ,

ЭA

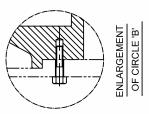
AD


4-TAPPED HOLES


1111


.1111

** **>|



0	2	2	4		Σ	Σ	2	2
—	25	35	75	4 0	55	55 1	02	2
F* GA*	16	6 21.5 35	26	i i	31	31	80 10 11 70 M	+
* L	5	9	0	0	8	∞	ç	2
Е	30	40	50		60	60		
۵ *	14	19	10	1	28	28	38	2
LV** V q AG B.S.C.	3/4"	3/4"	"N/S		1"	1"	Ę	-
AG	53	53	63	S	60	60	C y	00
q	143	170	156	169	193	200	239	258
V	30 104 143 53	30 114 170 53	101	47 I	40 143 193	156	170	0/1
** LV	30	30		ŝ	40	45 156 200 60	50	
g			¢	Э	135	148	12	0/1
L	279	3 155 157 331	355		439	456	က်	56
AC	140	157	V _ F	t -	195	220	760	200
T AD AC	145	155	621	1	198	211	666	707
Т	2.5		ć	כ	3.5	3.5	~	4
S	M6X10	M6X13	C17914		M8X12	M8X12		
*	30	40	50	3	60	60	0	00
*≥	85	100	115	2	130	130	01 E	c12
*≥ *⊻	70	80	0E	с С	110	110	001	100
٩	105	120	110	2	160	160	750	200
Pole	2,4 & 6 105 70 85 30 M6X10 2.5 145 140 279	2,4 & 6 120 80 100 40 M6X13	3 2,4,6 & 8 1 AD 05 115 50 M8Y13	2,4,6 & 8	2,4,6 & 8 160 110 130 60 M8X12 3.5 198 195 439	112M 4,6 & 8 160 110 130 60 M8X12 3.5 211 220 456	132S 2,4,6 & 8	132M 2,4,6 & 8
IEC Fr. size	71	80	806	30L	100L	112M	132S	132M

55 M10 55 M10

M8

ВS M6

d5

-SHAFT-

M12


CAT-B-7113-4-1 All Dimensions are in mm unless otherwise specified. ① Without Eye bolt
 □ Also suitable for V19 & v18 mounting as per IS 2253
 □ Key / key way fit : h9 / N9 ** Minimum distance for efficient cooling of motor to be maintained by user

Tolerance Specification	j6 14,19,24,28Ø		IS: 2048	IS 2540
Dimension	, <u>j</u>	k6 38Ø	GA,F	d5(centerina)
Tolerance Specification	6666 SI	IS : 2223		
Tolerance	j6 ±0.3		+1	
Dimension	z	Μ		

TABI F A

Methods of Cooling

Designation system concerning methods of cooling refers to standard IEC 60034-6. **Explanation of the product code**

International Cooling	Circuit arrangement	Primary coolant	Method of movement of primary coolant	Secondary coolant	Method of movement of secondary coolant
(10)	4	(A)	1	(A)	6
(IC)	1	2	3	4	5
Position 1			Position 4		
0 :	Free circulation (open circuit)		A:	For air (omitted for simplified designation)	
4 :	Frame surface cooled		W:	For water	
Position 2			Position 5		
A:	For air (omitted for simplified designation)		0	Free convection	
Position 3			1	Self-circulation	
0 :	Free convection		6	Machine-mounted independent component	
1:	Self-circulation		8	Relative displacement	
6 :	Machine-mounted independent component				

IC 01	Enclosure IP 21 - IP 23 (type G) <u>Self-ventilated with integral fan cooling (DP)</u> Cooling air is blown through the motor by a fan mounted on the shaft.
IC 06	Enclosure IP 21 - IP 23 (type GI) <u>Separate ventilation with radial fitted fan unit (FV)</u> Cooling air is blown through the motor by a separately excited fan motor. The inlet side may be equipped with an air filter.
IC 17	Enclosure IP 21 - IP 23 (type G) <u>Single pipe ventilated (FV)</u> Cooling air is blown across the motor through the pipe connection with a separate customer provided external blower fan and discharges on the other side to open space.
IC 410	Enclosure IP 44 - IP 55 (type GZ) <u>Totally-enclosed non ventilated (TENV)</u> Cooling without using a fan, only by nature ventilation and radiation on the totally enclosed motor surface.
IC 411	Enclosure IP 44 - IP 55 (type GZE) <u>Totally-enclosed fan-cooled (TEFC)</u> Cooling air is blown over the totally enclosed motor surface by a fan mounted an the shaft.
IC 416	Enclosure IP 44 - IP 55 (type GZO) <u>External surface cooling (TEFV)</u> Cooling air is blown over the totally enclosed motor surface by an separately excited fan motor.
IC 37	Enclosure IP 44 - IP 55 (type GZ) Double pipe ventilated (TEPV) Cooling air is blown across the motor through a pipe connecting by means of a separate customer provided external blower fan and discharges on the other side's pipe connecting.

Degree of Protection

Degree of protection for rotating machines are indicated according to IS/IEC 60034-5 using the characteristic letters 'IP' followed by two characteristic numerals for the degree of protection.

The first numeral indicates protection against contact and ingress of foreign bodies.

The second numeral indicates protection against ingress of water.

First characteristic numeral

IP2X Protected against solid objects greater than 12mm

IP5X Dust protected motors, Ingress of dust is not fully protected ,but dust can not enter in an amount sufficient to interface with satisfactory operations of the motor.

Second characteristic numeral

IPX3 Protected against spraying water, sprayed up to angle of 60° from vertical shall have no harmful effect.

IPX5 Protected against water, jets by a nozzle from any direction shall have no harmful effect.

IPX6 Protected against heavy seas, powerful jets from all direction shall have no harmful effect.

Degree of protection Schematic

1 st N	ume	ric		2 nd 1	lumeri	ic
, <u>"</u> . O	0	No protection			0	No protection
	1	Protected against solid objects greater that 50mm (e.g. hand)			1	Dripping water shall have no harmful effect.
	2	Protected against solid objects greater that 12mm (e.g. fingers)	1111		2	Protected against dripping water when enclosure is titled 15°
	3	Protected against solid objects greater that 2.5mm (e.g. tools, wires)			3	Protected against spraying water up to 60 ⁰
()	4	Protected against solid objects greater that 1mm (e.g. wire or strips)		Q	.4	Water splashed from any direction shall have no harmful effect
	5	Ingress of dust is not totally protected, but does not enter in sufficient quantities to harm equipment	-4	C.	5	Water hosed against the enclosure shall have no harmful effect (water jets)
\bigcirc	6	No ingress of dust	-)		6	Water from powerful jets of heavy seas shall have no harmful effects

Tolerances (Reference IS/IEC 60034-1)

Unless stated otherwise, tolerances on declared values are applicable as given in the table below:

Schedule of tolerances on values of quantities

Quantity	Tolerance
Efficiency ŋ -Machines up to and including 150 kW (or kVA) -Machines above 150 kW (or kVA)	-15 % of (1 - ŋ <i>)</i> -10 % of (1 - ŋ <i>)</i>
Power-factor, $\cos\Phi$, for induction machines	-1/6 (1 -cosΦ) Minimum absolute value 0.02 Maximum absolute value 0.07
Slip of induction motors (at full load and at working temperature) PN < 1 kW PN 1 kW	± 30 % of the slip ± 20 % of the slip
Locked rotor current of cage induction motors with any specified starting apparatus	+20 % of the current
Locked rotor torque of cage induction motors	+25 -15 % of the torque. (+25 % may be exceeded by agreement)
Breakdown torque of induction motors	-10% of the torque except that after allowing for this tolerance the torque shall be not less than 1.6 or 1.5 times the rated torque

Note: When tolerance is stated in only direction, the value is not limited in the other direction.

ANNEXURE -IV

Limiting Mean Sound Power Level Lw in dB(A) for Airborne Noise Emitted by Rotating Electrical Machines

IS: 12065 - 1987

tective [Protective Enclosure	IP22	IP44	IP22	IP44	IP22	IP44	IP22	IP44	IP22	IP44	IP22	IP44
H 20 17/1	14/41				Rated Speed (rpm)	ed (rpm)							
rdung kv(ur kvA)	UI KVAJ	960 and below	below	961 to 132	0 1320	1321 to 1900	o 1900	1901 to	1901 to 2360	2361 to	2361 to 3150	3151 to 3750	0 3750
Above	Up to					Sound Power Level dB(A)	ver Level d	B(A)					
	1.1		76		79	ı	80	-	83		84	•	88
1.1	2.2	1	79	-	80	-	83		87		89		91
2.2	5.5	ı	82		84		87		92	I	93	ı	95
5.5	11	82	85	85	88	88	91	91	96	94	97	97	100
11	22	86	89	89	93	92	96	94	98	97	101	100	103
22	37	89	91	92	95	94	97	96	100	66	103	102	105
37	55	06	92	94	97	97	66	66	103	101	105	104	107
55	110	94	96	67	101	100	104	102	105	104	107	106	109
110	220	98	100	100	104	103	106	105	108	107	110	108	112
220	630	100	102	104	106	106	109	107	111	108	112	110	114
660	1100	102	104	106	107	107	111	108	111	108	112	110	114
1100	2500	105	107	109	110	109	113	109	113	109	113	110	114
2500	6300	106	108	110	112	111	115	111	115	111	115	111	115
6300	16000	108	110	111	113	113	116	113	116	113	116	113	116

Note 1: IP22 corresponds generally to drip-proof, ventilated and similar enclosures.

IP44 corresponds generally to totally enclosed fan-cooled, closed air circuit air-cooled, and similar enclosures (See IS: 4691-1985*).

Note 2: No positive tolerance is allowed on the above sound power levels.

Storage and Handling Instructions for Motors

Introduction

The purpose of this write-up is to offer some short, easy to follow recommendations to our customers, users and dealers for the proper care of electric motors in storage.

For practical purposes, such equipment is considered to be in storage not only when it is in the store room but also when:

It has been delivered to the jobsite and is awaiting installation;

- or, It has been installed but regular operation is delayed / pending completion of plant construction;
- or, there are 3 months or more, idle periods between operating cycles;
- or, the plant or department is shut down.

The recommendations given here apply to conditions commonly found in indoor storage. Personnel responsible for care of the equipment should use good discretion in adapting these recommendations to the particular situation. Common sense and sound safety rules need to be followed.

SAFETY PROCEDURE

WARNING

Dangerous voltages are present in the motor components which can cause serious injury, electrocution and equipment damage. To avoid serious injury and/or equipment damage before any adjustments, servicing, wiring, parts replacement or any other act requiring physical contact with the electrical or mechanical working components of this equipment is performed, all equipment must be de-energized, disconnected and isolated to prevent accidental contact with live or rotating parts.

The success and safe operation of motors is dependent upon proper handling, installation, operation and maintenance, as well as upon proper design and manufacture. Failure to follow certain fundamental installation and maintenance requirements may lead to personal injury and the failure and loss of the motor as well as damage to other property. Only qualified personnel should be involved in the inspection, maintenance and repair procedure and all plant safety procedures must be observed.

A qualified person is one who is familiar with the installation, construction and operation of the equipment, and the hazards involved. In addition, he has the following qualifications:

- Is trained and authorized to energize, deenergize, clear, ground, and tag circuits and equipment in accordance with established safety practices.

- Is trained in the proper care and use of protective equipment such as rubber gloves, hard hat, safety glasses or face shields, flash clothing etc. in accordance with established safety practices.

- Is trained in rendering first aid.

Motor should be installed and grounded as per local and national codes.

Storage Instructions For Motors

Indoor storage

Wholly controlled atmosphere or partially controlled atmosphere

- Storage room must be clean, dust free and dry
- Maintain temperature in the range 20 deg to 50 deg in the storage room
- Maintain uniform temperature throughout the room
- Relative humidity to be 50% or less
- Ensure absence of harmful fumes
- Vibration free area
- Space heater must be energized if temperature falls below 10 deg.C or humidity is more than 50% to prevent harmful effects of moisture condensation.
- Ensure that no water drips on motor and no water accumulates under the motor.
- Ensure that all plugs originally provided are in place. (e.g. cable entry hole plugs, drain plugs and plug in fan cowl for greasing. If plugs are missing, all the openings to be covered with an adhesive plastic cloth.
- The enclosing structure should be designed to protect the motor from flying debris or other damage from high winds.

Cover the motor completely in a strong, transparent plastic bag to exclude dirt, dust, moisture, and other foreign materials. Before sealing this bag, small bags of silica-gel desiccant should be put inside the bag, around the motor.

Rodents and other animals like to house inside motors in search of warm surroundings or food. Some of them attack the insulating materials. Their access to the motor should be restricted.

Outdoor storage

Dry climate (Conditions usually found) - Dust, sand, heat from the sun, and occasional rain or snow.

Humid climate (Conditions usually found) - Dust, rain and snow, organic (fungus) growth

Salty and industrial atmospheres (Conditions usually found) - Moisture impregnated with salts or other acidic / alkaline chemicals, salty dust, sand, rain or snow, fungus growth, fumes, coal and chemical dust soot. All precautions indicated in indoor storage to be taken.

In addition, after the unit is covered as explained in these instructions, a shed should be erected to protect it from direct rain, snow, and excessive direct sun heat. At a bare minimum, a heavy water-proofed cover should be slipped over it.

Bearings:

Special precautions need to be taken when the machine is idle for a period of 3 moths or more to avoid corrosion of the bearings and loss of grease. It is advisable to rotate the shaft periodically (once in a week @ 30 rpm for minimum 15 sec.) as the grease tends to settle at the bottom of the housings. Before a machine is started after a long idle period, the bearing covers should be removed and grease in the housing pressed with thumbs between the races of the bearing. If any deterioration of grease is apparent, the old grease should be removed and new grease pressed in the bearing housings.

If the machine is idle for four months or more, change the grease completely.

Shaft extensions, machines surfaces or flanges:

The machined parts have a protective coat of anti-rust preservative which should not be taken off during normal storage periods. In case of long storage, periodic examination should be carried out and fresh preservation should be applied, if required, after any rust or moisture has been removed. Preservation can be easily taken off by using paraffin or other petroleum solvents.

Complete motor:

When storage may last over one year, repaint all surfaces previously painted, before putting motor into service.

Handling instructions for motors

- For lifting the motor, only the lifting hook provided with motor, are to be used.
- Use all lifting hooks that are provided simultaneously. (If motor is provided with two hooks, use both hooks and not one)
- Do not use any other part of the motor for lifting.
- Do not use shaft projections for dragging the motor.
- Do not roll or drag the motor on the floor.
- Motors must not be kept in vertical position with external fan cowls as base.
- Jerks and jolts must be avoided to increase the bearing life.
- In vertical lifting, uncontrolled rotation of the motor must be prevented.
- Do not lift other equipments with motor lifting points only.

Recommended Maintenance Schedule

1. DAILY MAINTENANCE

- 1.1 Examine visually earth connections. Check motor leads and cable connections are fully tight and not loose.
- 1.2 Check motor windings for overheating (the permissible maximum temperature is above that which can be comfortably felt by hand).
- 1.3 Examine control equipments.
- 1.4 Check body and bearing temperature
- 1.5 Check voltage and current in all three phases. Check voltage variation and unbalance.
- 1.6 Check vibrations at bearings.
- 1.7 Check if motor rotation is free and measure speed.
- 1.8 Check for any abnormal noise.

Note: In order to avoid opening up motors, a good indication is to observe the shell temperature under normal working conditions. Any increase not accounted for, for example by seasonal increase in ambient temperature, should be suspected.

2. WEEKLY MAINTENANCE

- 2.1 Check belt tension. In cases where this is excessive, it should immediately be reduced. Check motor pulley seat location. Pulley has to rest on shaft shoulder.
- 2.2 Check coupling condition.
- 2.3 Blow out windings of protected type motors situated in dusty locations. Check for any accumulation of dirt, sand or fine dust.
- 2.4 Examine starting equipment for burnt contacts where motor is started and stopped frequently.
- 2.5 For outdoor motors, check if canopy is at proper place.

3. MONTHLY MAINTENANCE

- 3.1 Overhaul Controllers.
- 3.2 Inspect and clean oil circuit breakers.
- 3.3 Wipe brush holders and check bedding of brushes of slip-ring motors.

4. HALF YEARLY MAINTENANCE

- 4.1 Clean windings of motors subjected to corrosive or other elements; also bake and varnish, if necessary.
- 4.2 In the case of slip-ring motors, check sliprings for grooving or unusual wear.
- 4.3 Check grease in ball and roller bearings and make it up where necessary taking care to avoid overfilling.

5. ANNUAL MAINTENANCE

- 5.1 Check all high speed bearings and renew, if necessary.
- 5.2 Blow out all motor winding thoroughly with clean dry air. Make sure that the pressure is not so high as to damage the insulation.
- 5.3 Clean and varnish dirty and oily windings.
- 5.4 Overhaul motors which have been subjected to severe operating conditions.
- 5.5 Renew switch and fuse contacts, if damaged. Check oil.
- 5.6 There can be cement dust / saw dust / rock dust / coal dust / grain dust on motor body. Blow out compressed air over motor body to clean this accumulated dust at the time of monthly maintenance. See to it that all ventilation paths are absolutely free.
- 5.7 Paint the motor if required.
- 5.8 Check insulation resistance to earth and between phases of motor winding, control gear and wiring.
- 5.9 Check resistance of earth connections.
- 5.10 Check air gaps.
- 5.11 Test the motor overload relays and breakers.

6. RECORDS

6.1 Maintain a register giving one or more pages for each motor and record therein all important inspection and maintenance works carried out from time to time. These records should show past performance, normal insulation resistance level, air gap measurements, nature of repairs and time between previous repairs and other important information which would be of help for good performance and maintenance. Sample format is attached.

Trouble Shooting Chart

TROUBLE	CAUSE	WHAT TO DO
Motor fails to start	Blown fuses	Replace fuses with proper type and rating.
	Overload trips	Check and reset overload in starter
	Improper power supply	Check to see that power supply agrees with Motor name plate and load factor
	Improper line connection	Check connections with diagram supplied with motor
	Open circuit in winding or control switch	Indicated by humming sound when switch is closed. Check for loose wiring connections. Also, ensure that all control contacts are closing
	Mechanical failure	Check to see if motor and drive turn freely. Check bearings and lubrication
	Short circuited stator	Indicated by blown fuses. Motor must be rewound
	Poor stator coil connection	Remove end shields, locate with test lamps
	Rotor defective	Look for broken bar sand/or end rings
	Motors may be over loaded	Reduce Load
Motor stalls	One phase may be open	Check lines for open phase
	Wrong application	Change type or size. Consult manufacturer
	Over Load	Reduce Load
	Low Voltage	Ensure the name plate voltage is maintained. Check connection
	Open circuit	Fuses blown, check overload relay, stator and push buttons
Motor runs and then dies down	Power failure	Check for loose connections to line, fuses and control
Motor does not come up to speed	Voltage too low at motor terminals because of line drop	Use higher voltage or transformer terminals or reduce load. Check connections. Check conductors for proper size
	Starting load too high	Check load motor is supposed to carry at start
	Broken rotor bars or loose rotor	Look for cracks near the rings. A new rotor may be required, as repairs are usually temporary
	Open primary circuit	Locate fault with testing device and repair

Motor takes too long to	Excessive load	Reduce load
accelerate and/or draws high amp	Low voltage during start	Check for high resistance. Adequate wire size
	Defective squirrel cage rotor	Replace with new rotor
	Applied voltage too low	Increase power tap
Wrong rotation	Wrong sequence of phases	Reverse connections at motor or at switchboard
Motor overheats while running	Overload	Reduce Load
under load	Frame vents may be clogged with dirt and prevent proper ventilation of motor	Open vent holes and check for a continuous stream of air from the motor
	Motor may have one phase open	Check to make sure that all leads are well connected
	Grounded coil	Locate and repair
	Unbalanced terminal voltage	Check for faulty leads, connections and transformers
Motor vibrates	Motor misaligned	Realign
	Weak support	Strengthen base
	Coupling out of balance	Balance coupling
	Driven equipment unbalanced	Rebalance driven equipment
	Defective bearings	Replace bearings
	Bearings not in line	Line up properly
	Balancing weights shifted	Rebalance motor.
	Contradiction between balancing of rotor and coupling (half key - full key)	Rebalance coupling or motor
	Polyphase motor running single phase	Check for open circuit
	Excessive end play	Adjust bearing or add shim
Scraping noise	Fan rubbing fan cover	Remove interference
	Fan striking insulation	Clear fan
	Loose on bed plate	Tighten holding bolts

Noisy operation	Rotor unbalance	Rebalance
Hot bearings general	Bent or sprung shaft	Straighten shaft
	Excessive belt pull	Decrease belt tension.
	Pulleys too far away	Move pulley closer to motor bearing
	Pulley diameter too small	Use larger pulleys
	Misalignment	Correct by realignment of drive
Hot bearings ball	Insufficient grease	Maintain proper quality of grease in bearing
	Deterioration of grease of lubricant contaminated	Remove old grease, wash bearings thoroughly in kerosene and replace with new grease
	Excess lubricant	Reduce quantity of grease, bearing should not be more than 1/2 filled
	Overload bearing	Check alignment, side and end thrust.
	Broken ball or rough races	Replace bearing, first clean housing thoroughly

MOTOR SERVICE RECORD

Serial No				_ kW_					т	уре			
Speed Volts	;		Ampe	res			Phase		F	requency			
Insulation Class			_ Tempe	rature l	Rise			°C F	- rame Siz	e			
Connection Diagram-Ro	tor					_ State	or						
Owner Order No			Item	No					Date Pur	chased _			
MACHINE TY	PE			WEA	THER PI	ROTEC	TED			L	UBRICA	TION	
- Horizontal - Vertical - Totally-Enclosed - Explosion-Proof			Bearing - Ball - Roller -Sleeve		D				-	Shaft ngth	Extensio		
Date Installed		Lo	ocation					Applicat	tion	Di	st. kept	forco	ooling
Date Repaired or	Be	anairs or	· Parts Re	nlaced				Fault			aired		Total
Replaced								Tuut		b	9y		Cost
Name of Part	No. Per Machine	N	acturer's Io.	Date	Qty. Repl.	Cost	Date	Qty. Repl.	Cost	Date Qty. Repl.			Cost
Rotor													
Stator Coils													
Bearing, DE													
NDE													
Cooling fan													
Others													
					11	SPEC	TION						
Date													
Bearings													
Lubrication													
Excess Heat					/								
Excess Noise													
Speed													
Voltage in 3 ph													
Voltage Variation													
Voltage Unbalance													
Current in 3 ph													
Current Variation													
Current Unbalance													
Insulation Resistanc	e												
Clean & clear air passages													
Alignment													
Vibration													
Body Temp.													
Abnormal noise													

Table 1 Derived Values of Limits of Vibration Severity in Rotating Electrical Machines measured in State of Free suspension (Velocity Mode)

IS 12075 : 2008

SI.No	Shaft Height mm	56 < H ≤132	132	132 <	132 < H ≤225	225 < H ≤400	\$400	H > 400	8
	Range of Speed, rpm	500 to 1500	> 1500 and up to 3000	500 to 1500	> 1500 and up to 3000	500 to 1500	> 1500 and up to 3000	500 to 1500	> 1500and up to3000
		rms va	alue of vibration	velocity in m	m/s for the shaf	rms value of vibration velocity in mm/s for the shaft height H in mm			
:=	N(Normal)	1.8	18	1.8	2.8	2.8	4.5	2.8	4.5
≣	R(Reduced)	0.71	0.71	0.71	1.12	1.8	2.8		
.2	S(Special)	0.45	0.45	0.45	0.71	1.12	1.8		

Table 2 Derived Values of Limits of Vibration Severity in Rotating Electrical Machines measured in State of Free suspension (Displacement Mode)

Shaft																								
Height			56 <	56 < H ≤132	2				132 <	132 < H ≤225	ъ				225 < H ≤400	H ≤400	_				£	H > 400		
Speed, rpm 500 600 750 1000 1500 3000 500	500	600	750	1000	1500	3000			750	1000	600 750 1000 1500 3000 500 600 750 1000 1500 3000	3000	500	600	750	1000	1500	3000	500	600	750	1000	1500	3000
						2	ibratic	on lim	nit in n	naxim	Vibration limit in maximum displacement amplitude, in μm	placen	nent a	ildme	tude,	in µm								
N(Normal) 96 80 64 48	96	80	64	48	32	32 16 96	96	80	80 64	48	32	25 150 125 100 75	150	125	100	75	50	42 150 125 100 75	150	125	100	75	50 40	40
R(Reduced) 36 30 24 18	36	30	24	18	12	9	36	30	30 24 18	18	8 12	10 96 80 64 48	96	80	64	48	32	26	1			1	1	1
S(Special) 24 20 16 12	24	20	16	12	∞	4	24	20	20 16 12	12	∞	9	50	60	50 60 40 30 20	30		17					1	1

Note: For the purpose of Table 2 f is assumed as frequency corresponding to rotor rpm. But for evaluation the dominant frequency should be determined by spectrum analysis and only that frequency should be used for calculation.

OUR OFFICES

NORTHERN REGION

NEW DELHI

1st Floor, 7-B Rajindra Park, Pusa Road, New Delhi 110060 T: +91 11 2581 6931 / 6932 / 6933 F: +91 11 2581 6940 Email: bbldelhi@bharatbijlee.com

LUDHIANA

SCO-146, 3rd Floor, Feroz Gandhi Market, Ludhiana 141 001 India T: +91 161 2775 0692 / 93 Email: bblludhiana@bharatbijlee.com

CHANDIGARH

SCO No. 333-34, 1st Floor Sector 35B, Chandigarh 160 022 T: +91 172 260 0532 / 35 F: +91 172 260 0531 E-mail: bblchandigarh@bharatbijlee.com

JAIPUR

206 1st Floor, Shalimar Complex, Church Road, Jaipur 302001 India T: +91 141 2377 223 Email: bbljaipur@bharatbijlee.com

INDORE

M-78 Trade Centre, 18 South Tukoganj, Indore 452 001 India T: +91 731 2524 474 /2514 486 Email: bblindore@bharatbijlee.com

EASTERN REGION

KOI KATA Flat No 8, Mansarower, 2nd Floor, 3B-Camac Street, Kolkata 700 016 India T: +91 33 2217 2382 / 83 F: +91 33 22172467 Email: bblcalcutta@bharatbijlee.com

WESTERN REGION

MUMBAI

501- 502, Swastik Chambers, 5th floor, Sion Trombay Road, Chembur (East), Mumbai 400071 T: +91 22 6145 7200 F: +91 22 6145 7255 Email: bblho@bharatbijlee.com

PUNF

Flat no 1, Sai Sankalp CHS, Opposite Jog Hospital, Paud Road, Kothrud, Pune 411038 India T: 020-65600476/77/78/80 Email: bblpune@bharatbijlee.com

NAGPUR Email: bblnagpur@bharatbijlee.com

REGISTERED OFFICE

Electric Mansion, 6th Floor, Appasaheb Marathe Marg, Prabhadevi, Mumbai 400 025 India T: +91 22 2430 6237 / 6375 India T: +91 22 2763 7200 / +91 22 2760 0401 F: 91 22 2437 0624 CIN: L31300MH1946PL005017 E-mail: bblcorporate@bharatbijlee.com

WESTERN REGION

AHMEDABAD

202, Arth Complex, 8- Rashmi Society, Behind A K Patel House, Mithakali Six Roads, Ahmedabad 38 009 India T: +91 79 2642 7667 F: +91 79 2656 3581 Email: bblahmedabad@bharatbijlee.com

VADODARA Email : bblvadodara@bharatbijlee.com

RAJKOT Email : bblrajkot@bharatbijlee.com

SOUTHERN REGION

BANGALORE 204-207, Ramanashree Chambers, 2nd Floor, 37 Lady Curzon Road, Bangalore 560 001 India T: +91 80 2559 2646 / 2137 / 2681 F: +91 80 2559 2823 Email: motorbangalore@bharatbijlee.com

CHENNAL

No 12, Rishikesh, No 75 (Old No.38) G N Chetty Road, T Nagar, Chennai 600 017 India T: +91 44 2815 4794 / 4793 F: +91 44 2815 4794 Email: bblchennai@bharatbijlee.com

SECUNDERABAD

Krishna Mansion, 2nd Floor, Adjacent to Bible House, 134 Rashtrapati Road, Secunderabad 500 003 India T: +91 40 2753 4512 F: +91 40 2753 1791 Email: bblsecbad@bharatbijlee.com

COIMBATORE

112 A, Chenny's Chamber, 1st Floor, Dr. Nanjappa Road, Coimbatore 641 018 India T: + 91 422 326 8881 Email: bblcoimbatore@bharatbijlee.com

MARKETING OFFICE

No. 2, MIDC Thane-Belapur Road, Airoli, Navi Mumbai 400 708 F: +91 22 2763 7423 E-mail: motorcmo@bharatbijlee.com

Bharat Bijlee

www.bharatbijlee.com